Skip to main content
Log in

Analytical Modeling of the Young’s Single-Photon Experiment Using the Quasi-Classical and Approximate Quantum-Mechanical Coordinate Photon Wave Functions

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The description of photon-matter interaction upon control, transmission, and detection of single-photon, two-photon, and multiphoton states, including the entangled ones, will play an ever-increasing role in many areas of photonics. An appropriate description requires taking into consideration various types of interference effects associated with these states. However, the relatively complex apparatus of second quantization of the electromagnetic field is used even in the simplest single-photon experiments equivalent to the Young’s one, e.g., the experiments with the Mach–Zehnder interferometer. In the present work, the Young’s single-photon mental experiment is explained using the coordinate photon wave function (PWF). The explanation is illustrated by specific examples of the single-photon states at certain wavelengths and different duration of radiation within the framework of two approaches: the quantum mechanical and the “quasi-classical.” In the first approach, a 6-component coordinate PWF is constructed based on the spherically symmetric momentum distribution in a wave packet, followed by approximate analytical calculations. In the second approach, a one-component quasi-classical PWF corresponding to the electric-dipole radiation is constructed. The same pronounced interference pattern was obtained in both cases, which makes is possible to draw the conclusion that the coordinate PWF allows explaining the one- and two-photon interference phenomena. This conclusion sheds the light on theoretical interpretation of the measurement of the coordinate PWF carried out in some of the recent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. P. Davydov and T. P. Zlydneva, J. Phys.: Conf. Ser. 1399, 022019 (2019). https://doi.org/10.1088/1742-6596/1399/2/022019

  2. A. P. Davydov and T. P. Zlydneva, J. Phys.: Conf. Ser. 1679, 022051 (2020). https://doi.org/10.1088/1742-6596/1679/2/022051

  3. L. Landau and R. Peierls, Zeit. F. Phys. 62, 188 (1930).

    Article  ADS  Google Scholar 

  4. H. A. Kramers, Quantum Mechanics (North-Holland, Amsterdam, 1958).

    Google Scholar 

  5. T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949). https://doi.org/10.1103/RevModPhys.21.400

    Article  ADS  Google Scholar 

  6. D. Bohm, Quantum Theory (Constable, London, 1954).

    Google Scholar 

  7. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed. (Pergamon, New York, 1982).

    Google Scholar 

  8. E. A. Power, Introductory Quantum Electrodynamics (Longmans, London, 1964).

    Google Scholar 

  9. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  10. I. Bialynicki-Birula, in Progress in Optics, Ed. by E. Wolf  (Elsevier, Amsterdam, 1996), Vol. 36, pp. 248–294. https://doi.org/10.1016/S0079-6638(08)70316-0

    Book  Google Scholar 

  11. I. Bialynicki-Birula, in Coherence and Quantum Optics VII, Ed. by J. H. Eberly, L. Mandel, and E. Wolf (Plenum, New York, 1996), pp. 313–323.

    Google Scholar 

  12. M. Hawton, Phys. Rev. A 59, 3223 (1999). https://doi.org/10.1103/PhysRevA.59.3223

    Article  ADS  Google Scholar 

  13. D. H. Kobe, Found. Phys. 29, 1203 (1999). https://doi.org/10.1023/A:1018855630724

    Article  MathSciNet  Google Scholar 

  14. T. Legero, T. Wilk, A. Kuhn, and G. Rempe, in Advances in Atomic, Molecular, and Optical Physics, Ed. by G. Rempe and M. O. Scully (Elsevier, 2005), Vol. 53, pp. 253–289.

    Google Scholar 

  15. J. Cugnon, Open J. Microphysics 1 (3), 41 (2011). https://doi.org/10.4236/ojm.2011.13008

    Article  Google Scholar 

  16. V. Debierre, in PhD Thesis (Ecole Centrale Marseille, Marseille, 2015). https://theses.hal.science/tel-01406401.

  17. P. Saari, in Quantum Optics and Laser Experiments, Ed. by S. Lyagushyn (IntechOpen, Rijeka, Croatia, 2012), pp. 49–66. https://doi.org/10.5772/29895

    Book  Google Scholar 

  18. A. P. Davydov, Vestn. Magnitogorsk. Gos. Univ., Estestv. Nauki 5, 235 (2004).

    Google Scholar 

  19. A. P. Davydov, in Actual Problems of Modern Science, Technology and Education: Proc. 73rd Int. Sci. and Tech. Conf. (Magnitogorsk. Gos. Tekh. Univ. im. Nosova, Magnitogosk, 2015), Vol. 3, pp. 133–137.

  20. A. P. Davydov, Elektromagnitnye Volny Elektronnye Sist. 20 (5), 43 (2015).

    Google Scholar 

  21. A. P. Davydov and T. P. Zlydneva, J. Phys.: Conf. Ser. 1661, 12028 (2020). https://doi.org/10.1088/1742-6596/1661/1/012028

    Article  Google Scholar 

  22. A. Davydov and T. Zlydneva, in Mathematics and its Applications in New Computer Systems. MANCS 2021, Ed. by A. Tchernykh, A. Alikhanov, M. Babenko, and I. Samoylenko, Lecture Notes in Networks and Systems, Vol. 424 (Springer, Cham, 2022), pp. 327–335. https://doi.org/10.1007/978-3-030-97020-8_30

  23. A. P. Davydov and T. P. Zlydneva, Inzh. Fiz., No. 6, 15 (2022). https://doi.org/10.25791/infizik.6.2022.1270

  24. B. J. Smith, E. Killett, M. G. Raymer, I. A. Walmsley, and K. Banaszek, Opt. Lett. 30, 3365 (2005). https://doi.org/10.1364/OL.30.003365

    Article  ADS  Google Scholar 

  25. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature 474, 188 (2011). https://doi.org/10.1038/nature10120

    Article  Google Scholar 

  26. M. Mirhosseini, O. S. Magaña-Loaiza, S. M. H. Rafsanjani, and R. W. Boyd, Phys. Rev. Lett. 113, 90402 (2014). https://doi.org/10.1103/PhysRevLett.113.090402

    Article  ADS  Google Scholar 

  27. R. Chrapkiewicz, M. Jachura, K. Banaszek, and W. Wasilewski, Nat. Photonics 10, 576 (2016). https://doi.org/10.1038/nphoton.2016.129

    Article  ADS  Google Scholar 

  28. B. Lam, M. Elkabbash, J. Zhang, and C. Guo, Research 2020, 2421017 (2020). https://doi.org/10.34133/2020/2421017

  29. R. Mignani, E. Recami, and M. Baido, Left. Nuovo Cimento 11, 568 (1974). https://doi.org/10.1007/BF02812391

    Article  Google Scholar 

  30. A. P. Davydov and T. P. Zlydneva, in 2016 13th Int. Sci.-Tech. Conf. on Actual Problems of Electronic Instrument Engineering (APEIE) (Novosibirsk. Gos. Tekh. Univ., Novosibirsk, 2016), Vol. 1, pp. 233–240. https://doi.org/10.1109/APEIE.2016.7806458

  31. A. P. Davydov and T. P. Zlydneva, in Proc. of the 2016 Conf. on Information Technologies in Science, Management, Social Sphere and Medicine (ITSMSSM 2016), Tomsk, 2016, Ed. by O. Berestneva, A. Tikhomirov, and A. Trufanov, Advances in Computer Science Research (Atlantis Press, 2016), pp. 208–215. https://doi.org/10.2991/itsmssm-16.2016.100

  32. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics: Quantum Mechanics (Addison-Wesley, Reading, Mass., 1965).

    Google Scholar 

  33. A. P. Davydov and T. P. Zlydneva, in 14th Int. Sci.-Tech. Conf. on Actual Problems of Electronic Instrument Engineering (APEIE) (Novosibirsk. Gos. Tekh. Univ., Novosibirsk, 2018), Vol. 1, Part 4, pp. 58–69. https://doi.org/10.1109/APEIE.2018.8545314

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Davydov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, A.P., Zlydneva, T.P. Analytical Modeling of the Young’s Single-Photon Experiment Using the Quasi-Classical and Approximate Quantum-Mechanical Coordinate Photon Wave Functions. Opt. Spectrosc. 131, 1148–1156 (2023). https://doi.org/10.1134/S0030400X24700140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X24700140

Keywords:

Navigation