Skip to main content
Log in

Hydrogen Complexes of 1,2-Naphthoquinone with Water Molecules in Aqueous Solution and Their Influence on Shifts of Absorption Bands

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Optical absorption spectra of 1,2-naphthoquinone in nonpolar (n-hexane) and polar (water) solvents are obtained. It is shown that quantum-chemical time-dependent density functional theory (ТDDFT B3LYP/6-311+G(d, p)) with the polarizable continuum model (PCM), which was used to calculate 1,2‑naphthoquinone in n-hexane solution and a 1,2-naphthoquinone hydrogen complex with two water molecules in aqueous solution, well describes the shifts of the absorption bands of 1,2-naphthoquinone in water with respect to their positions in n-hexane. The formation of hydrogen complexes of 1,2-naphthoquinone with n water molecules (n = 1–4) in aqueous solution is considered based on the analysis of the deviations of calculated band shifts from experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry (Wiley-VCH, Weinheim, 2011).

    Google Scholar 

  2. O. Dopfer and M. Fujii, Chem. Rev. 116, 5432 (2016). https://doi.org/10.1021/acs.chemrev.5b00610

    Article  Google Scholar 

  3. G. Litwinienko and K. Ingold, Acc. Chem. Res. 40, 222 (2007). https://doi.org/10.1021/ar0682029

    Article  Google Scholar 

  4. C. J. Cramer and D. G. Truhlar, Chem. Rev. 99, 2161 (1999). https://doi.org/10.1021/cr960149m

    Article  Google Scholar 

  5. J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994). https://doi.org/10.1021/cr00031a013

    Article  Google Scholar 

  6. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005). https://doi.org/10.1021/cr9904009

    Article  Google Scholar 

  7. S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117 (1981). https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  8. M. Vetta, M. F. S. J. Menger, J. J. Nogueira, and L. Gonzalez, J. Phys. Chem. B 122, 2975 (2018). https://doi.org/10.1021/acs.jpcb.7b12560

    Article  Google Scholar 

  9. T. Gustavsson, A. Banyasz, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, J. Am. Chem. Soc. 128, 607 (2006). https://doi.org/10.1021/ja056181s

    Article  Google Scholar 

  10. G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, and V. Barone, J. Chem. Phys. 124, 094107 (2006). https://doi.org/10.1063/1.217325

    Article  ADS  Google Scholar 

  11. M. I. Sancho, M. C. Almandoz, S. E. Blanco, and E. A. Castro, Int. J. Mol. Sci. 12, 8895 (2011). https://doi.org/10.3390/ijms12128895

    Article  Google Scholar 

  12. E. E. Tseplin, S. N. Tseplina, and O. G. Khvostenko, Opt. Spectrosc. 125, 506 (2018). https://doi.org/10.1134/S0030400X18100260

    Article  ADS  Google Scholar 

  13. E. E. Tseplin and S. N. Tseplina, Chem. Phys. Lett. 716, 142 (2019). https://doi.org/10.1016/j.cplett.2018.12.038

    Article  ADS  Google Scholar 

  14. R. Improta and V. Barone, J. Am. Chem. Soc. 126, 14320 (2004). https://doi.org/10.1021/ja0460561

    Article  Google Scholar 

  15. E. E. Tseplin, S. N. Tseplina, and O. G. Khvostenko, Opt. Spectrosc. 110, 903 (2011). https://doi.org/10.1134/S0030400X11060166

    Article  ADS  Google Scholar 

  16. E. E. Tseplin, S. N. Tseplina, and O. G. Khvostenko, Opt. Spectrosc. 113, 411 (2012). https://doi.org/10.1134/S0030400X12080206

    Article  ADS  Google Scholar 

  17. E. E. Tseplin, S. N. Tseplina, and O. G. Khvostenko, Opt. Spectrosc. 120, 274 (2016). https://doi.org/10.1134/S0030400X16010203

    Article  ADS  Google Scholar 

  18. L. Martínez-Fernández, A. J. Pepino, J. Segarra-Martí, A. Banyasz, M. Garavelli, and R. Improta, J. Chem. Theory Comput. 12, 4430 (2016). https://doi.org/10.1021/acs.jctc.6b00518

    Article  Google Scholar 

  19. B. Pullman, S. Miertius, and D. Perahia, Theor. Chim. Acta 50, 317 (1979). https://doi.org/10.1007/BF00551339

    Article  Google Scholar 

  20. M. T. Bilkan, Phys. Chem. Liq. 57, 100 (2019). https://doi.org/10.1080/00319104.2018.1423564

    Article  Google Scholar 

  21. M.-P. Gaigeot and M. Sprik, J. Phys. Chem. B 108, 7458 (2004). https://doi.org/10.1021/jp049940m

    Article  Google Scholar 

  22. T. van Mourik, Phys. Chem. Chem. Phys. 3, 2886 (2001). https://doi.org/10.1039/B102701H

    Article  Google Scholar 

  23. G. Fogarasi and P. G. Szalay, Phys. Chem. Chem. Phys. 17, 29880 (2015). https://doi.org/10.1039/C5CP04563K

    Article  Google Scholar 

  24. Van T. Mourik, V. I. Danilov, E. Gonzalez, A. Deriabina, and V. I. Poltev, Chem. Phys. Lett. 445, 303 (2007). https://doi.org/10.1016/j.cplett.2007.07.081

    Article  ADS  Google Scholar 

  25. S. Kim and H. F. Schaefer, J. Chem. Phys. 126, 064301 (2007). https://doi.org/10.1063/1.2432123

    Article  ADS  Google Scholar 

  26. S. Nagakura and A. Kuboyama, J. Am. Chem. Soc. 76, 1003 (1954). https://doi.org/10.1021/ja01633a017

    Article  Google Scholar 

  27. A. Kuboyama, R. Yamazaki, S. Yabe, and Y. Uehara, Bull. Chem. Soc. Jpn. 42, 10 (1969). https://doi.org/10.1246/bcsj.42.10

    Article  Google Scholar 

  28. A. Kuboyama and H. Arano, Bull. Chem. Soc. Jpn. 49, 1401 (1976). https://doi.org/10.1246/bcsj.49.1401

    Article  Google Scholar 

  29. A. Kuboyama and H. Matsumoto, Bull. Chem. Soc. Jpn. 52, 1796 (1979). https://doi.org/10.1246/bcsj.52.1796

    Article  Google Scholar 

  30. A. Kuboyama, Bull. Chem. Soc. Jpn. 54, 873 (1981). https://doi.org/10.1246/bcsj.54.873

    Article  Google Scholar 

  31. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  ADS  Google Scholar 

  32. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  Google Scholar 

  33. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994). https://doi.org/10.1021/j100096a001

    Article  Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision C.1 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  35. G. A. Zhurko and D. A. Zhurko, Chemcraft, Vers. 1.7. https://www.chemcraftprog.com.

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Spektr Center for Collective Use of the Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, and using the supercomputer of the Khimiya Center for Collective Use of the Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences.

Funding

This work was supported by a state assignment (project no. АААА-А19-119022290052-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Tseplin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseplina, S.N., Tseplin, E.E. Hydrogen Complexes of 1,2-Naphthoquinone with Water Molecules in Aqueous Solution and Their Influence on Shifts of Absorption Bands. Opt. Spectrosc. 129, 737–745 (2021). https://doi.org/10.1134/S0030400X21050179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21050179

Keywords:

Navigation