Skip to main content
Log in

Exploring nonlinear optical properties of perylene diimide and biomolecules complexes: a computational supramolecular study

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This study investigates the supramolecular interactions between perylene diimides (PDI) and nucleotides, specifically adenosine monophosphate (AMP) and cytidine monophosphate (CMP). Ten complexes (complex 1 (l-ala-PDI-AMP), complex 2 (B-ala-PDI-AMP), complex 3 (GLY-PDI-AMP), complex 4 (IMI-PDI-AMP), complex 5 (PYR-PDI-AMP, complex 6 (l-ala-PDI-CMP), complex 7 (B-ala-PDI-CMP), complex 8 (GLY-PDI-CMP), complex 9 (IMI-PDI-CMP), and complex 10 (PYR-PDI-CMP), were simulated using the B3LYP/6-31G(d,p) level of DFT method. The study explores NMR, IR, UV, hyperpolarizabilities, frontier molecular orbitals (FMOs), density of states (DOS), noncovalent interactions (NCI), iso-surface analysis, atom in molecule (AIM), dipole moment (µ), electron density distribution map (EDDM), transition density matrix (TDM), molecular electrostatic potential (MEP), and electron–hole analysis (EHA) using differential functional theory (DFT). The weak bonds formed were visualized using Discovery Studio Visualizer. The electronic properties of the complexes were examined through natural bond orbital (NBO) and natural population analysis (NPA), leading to nonlinear optics (NLO) study. Complex 6 demonstrates the highest NLO activity with γ static of 17,424,700.00, and complex 10 exhibits the weakest NLO activity with second dipole hyperpolarizability (γ static) at 25,116.10. Moreover, global reactivity factors for complexes 1–5 show EA ranging from 6.53 to 7.7, and ionization potential (IP) spans 7.8–8.8. Global hardness values highlight complex 4 as the hardest (η = 0.55) and complex 1 as the softest (η = 0.51). Electronegativity (X) varies from 7.28 to 8.25, with complex 3 being the most electronegative. Chemical potential (μ) ranges from − 7.9 to − 8.25, global softness (σ) identifies complex 1 as the softest (0.2575) and complex 4 as the hardest (0.435). Electrophilicity (ω) ranges from 33.30 to 61.87. Complexes 6–10 show EA from 6.7 to 7.53. IP values range from 8.4 to 8.6, with complexes 7 and 10 highest. Global hardness spans 0.53 to 0.85. X ranges from 7.55 to 8.06, with complex 7 the most electronegative. μ varies from − 7.55 to − 8.06, and complex 7 has the lowest. From σ values, complexes 9 and 10 are the softest. ω ranges from 35.53 to 60.78, with complex 7 the most electrophilic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Kennedy CR, Lin S, Jacobsen EN (2016) The cation–π interaction in small-molecule catalysis. Angew Chem Int Ed Engl 55:12596–12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao Y, Cotelle Y, Liu L, López-Andarias J, Bornhof A-B, Akamatsu M, Sakai N, Matile SJ (2018) The emergence of anion–π catalysis. Acc Chem Res 51:2255–2263.

  3. Wheeler SE, Houk KN (2010) Are anion/π interactions actually a case of simple charge–dipole interactions? J Phys Chem A 114:8658–8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herbert JMJ (2021) Neat, simple, and wrong: Debunking electrostatic fallacies regarding noncovalent interactions. J Phys Chem A 125:7125–7137

    Article  CAS  PubMed  Google Scholar 

  5. Wheeler SE, Bloom JWJCC (2014) Anion–π interactions and positive electrostatic potentials of N-heterocycles arise from the positions of the nuclei, not changes in the π-electron distribution. Chem Commun 50:11118–11121

    Article  CAS  Google Scholar 

  6. Bootsma AN, Wheeler SE (2018) Tuning stacking interactions between asp–arg salt bridges and heterocyclic drug fragments. J Chem Inf Model 59:149–158.

    Article  PubMed  Google Scholar 

  7. Bootsma AN, Wheeler SE (2019) Converting SMILES to stacking interaction energies. J Chem Inf Model 59:3413–3421.

    Article  CAS  PubMed  Google Scholar 

  8. Wheeler SE, Houk KN (2009) Through-space effects of substituents dominate molecular electrostatic potentials of substituted arenes. J Chem Theory Comput 5:2301–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khan MA, Ayub AR, Alrowaili Z, Ilyas M, Hui L, Abbas SZ (2022) Self-assembly of 2D coordination complex of cytidine monophosphate to boost up the optical phenomena. J Molec Struct 1268:133655

    Article  CAS  Google Scholar 

  10. Arshad MN, Faidallah HM, Asiri AM, Kosar N, Mahmood TJ (2020) Structural, spectroscopic and nonlinear optical properties of sulfonamide derivatives; experimental and theoretical study. J Molec Struct 1202:127393

    Article  CAS  Google Scholar 

  11. Ling Q-H, Zhu J-L, Qin Y, Xu L (2020) Naphthalene diimide-and perylene diimide-based supramolecular cages. Mater Chem Front 4:3176–3189

    Article  CAS  Google Scholar 

  12. Wang R, Ma Y, Zhao J, Zhang A, Yang S, Shen H, Li G, Shi Z (2018) Novel hydroxyl-substituted perylene-3, 4, 9, 10-tetracarboxylic acid diimides for selective recognition of fluoride. Sens Actuators B: Chem 260:719–726

    Article  CAS  Google Scholar 

  13. Popova VG, Kulik LV, Samoilova RI, Stass DV, Kokovkin VV, Glebov EM, Berezin AS, Novikov AS, Garcia A, Tuan HT et al (2023) Noncovalent dualism in perylene-diimide-based keggin anion complexes: theoretical and experimental studies. Inorganic Chem 62:19677–19689

    Article  CAS  Google Scholar 

  14. Yin H, Geng Y, Sun G-Y, Su Z-M (2017) Theoretical design of perylene diimide dimers with different linkers and bridged positions as promising non-fullerene acceptors for organic photovoltaic cells. J Phys Chem C 121:2125–2134

    Article  CAS  Google Scholar 

  15. Rostami-Tapeh-Esmail E, Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H (2020) Perylene-3, 4, 9, 10-tetracarboxylic diimide and its derivatives: Synthesis, properties and bioapplications. Dyes Pigments 180:108488

    Article  CAS  Google Scholar 

  16. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09 Revision A. 1, 2009. 139.

  17. Ali HS, Henchman RH, de Visser SP (2021) What Determines the Selectivity of arginine dihydroxylation by the nonheme iron enzyme OrfP? Chem A Euro J 27:1795–1809

    Article  CAS  Google Scholar 

  18. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652.

    Article  CAS  Google Scholar 

  19. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  20. Yang Z, Liu C, Shao C, Zeng X, Cao DJN (2016) Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting. Nanotechnology 27(26):265701

    Article  PubMed  Google Scholar 

  21. Studio DJA (2008) Discovery studio.

  22. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  23. Norman P, Bishop DM, Jensen HJA, Oddershede J (2005) Nonlinear response theory with relaxation: the first-order hyperpolarizability. J Chem Phys 123:194103

    Article  PubMed  Google Scholar 

  24. Qiu Y-Q, Li Z, Ma N-N, Sun S-L, Zhang M-Y, Liu P-J (2013) Third-order nonlinear optical properties of molecules containing aromatic diimides: effects of the aromatic core size and a redox-switchable modification. J Mol Graph Model 41:79–88.

  25. Gorelsky SJ (2010) SWizard Program. University of Ottawa, Ottawa, p 2013

    Google Scholar 

  26. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  27. O'boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package‐independent computational chemistry algorithms. J Comput Chem 29:839–845.

    Article  CAS  PubMed  Google Scholar 

  28. Resnati G, Boldyreva E, Bombicz P, Kawano MJI (2015) Supramolecular interactions in the solid state. IUCrJ 2:675–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varshey DB, Sander JR, Friščić T, MacGillivray LR (2012) Supramolecular Interactions. In: Steed JW, Gale PA (eds) Supramolecular chemistry: from molecules to nanomaterials. Wiley-VCH, pp 9–24

    Google Scholar 

  30. Sharma S, Sharma A, Gupta U (2021) Molecular Docking studies on the Anti-fungal activity of Allium sativum (Garlic) against Mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1. 0.0.

  31. Design LJBC (2014) Pharmacophore and ligand-based design with Biovia Discovery Studio®.

  32. Parr RG, von Szentpály L, Liu SJ (1999) Electrophilicity index. J Amer Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  33. Chattaraj PK, Roy DR (20070 Update 1 of: electrophilicity index. Chem Rev 107:PR46-PR74.

  34. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  35. Tsuneda T, Song J-W, Suzuki S, Hirao K (2010) On Koopmans’ theorem in density functional theory. J Chem Phys 133:174101

    Article  PubMed  Google Scholar 

  36. Deepa PJ (2019) Does the stability of the stacking motif surpass the planar motif in 2-amino-4-nitrophenol?—a CCSD (T) analysis. J Mol Model 25:1–9

    Article  CAS  Google Scholar 

  37. Das C, Adak P, Mondal S, Sekiya R, Kuroda R, Gorelsky SI, Chattopadhyay SK (2014) Synthesis, characterization, X-ray crystal structure, DFT calculations, and catalytic properties of a dioxidovanadium (V) complex derived from oxamohydrazide and pyridoxal: A model complex of vanadate-dependent bromoperoxidase. Inorg Chem 53:11426–11437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21471017) and the Inter- national Collaboration Project of Ministry of Science and Technology (Grant no. G2022184006L). A. Irfan extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding through Large Group Research Project under Grant No. RGP2/63/44. Y. Sandali thanks the University of Jeddah for its technical and financial support under grant no. (UJ-23-DR-248).

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

W.H. wrote the manuscript, and done the simulation. S.I. proof read the manuscript. M.R. helped in making figures. M.M. helped in making scheme. H.S. helped in simulation M.H. corrected the English language specifically. H.L . is the group leader (my supervisor, she will be corresponding author), Y.S. helped me in revision. and A.I. helped me in revision too. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Conflict of interests

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18443 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, W., Ali, H.S., Iqbal, M.S. et al. Exploring nonlinear optical properties of perylene diimide and biomolecules complexes: a computational supramolecular study. Theor Chem Acc 143, 27 (2024). https://doi.org/10.1007/s00214-024-03098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03098-w

Keywords

Navigation