Skip to main content
Log in

Drought and Heat Stress-Mediated Modulation of Alternative Splicing in the Genes Involved in Biosynthesis of Metabolites Related to Tea Quality

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Alternative splicing (AS) regulates mRNAs at the post-transcriptional level to affect both their amounts and the protein function. However, little is known about the roles of AS in regulation of biosynthesis of amino acids, flavonoids, and volatile compounds in tea plants. In this study, we used Iso-seq and transcriptome deep sequencing (RNA-seq) to identify AS events, and analyzed the expression of respective mRNAs in tea plants under drought (DS), heat stress (HS), and their combination (HD). By RT-PCR, we validated the AS events in nine genes involved in the biosynthesis of amino acids and flavonoids. The genes accumulating AS transcripts under DS, HS, and HD conditions included those encoding for anthocyanidin reductase (ANR), dihydrofavonol-4-reductase-like (DFRA), and chalcone isomerase (CHI). Similarly, genes directly or indirectly involved in the biosynthesis of volatile compounds such as lipoxygenase (LOX), terpenoid/terpene synthase (TPS), and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) also had AS events. Our study revealed that AS might specifically regulate the biosynthesis of amino acids in tea plants under stressful conditions. Moreover, we suggest that the AS events within the ANR and DFRA transcripts might play an important role in the regulation of flavonoid biosynthesis under DS, HS, and HD conditions. This study improved our understanding of the genetic drivers of the changes in the content of bioactive ingredients of tea plants subjected to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ahmed S., Stepp J.R., Orians C., Timothy G., Corene M., Albert R., Sean C., Dayuan X., Chunlin L., Uchenna U., Sarabeth B., David S., Edward K. 2014. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS One. 9, e109126. https://doi.org/10.1371/journal.pone.0109126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Das A., Das S., Mondal T.K. 2012. Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol. Biol. Rep. 30, 1088–1101. https://doi.org/10.1007/s11105-012-0422-x

    Article  CAS  Google Scholar 

  3. Li M., Liu J., Zhou Y., Zhou S., Zhang S., Tong H., Zhao A. 2020. Transcriptome and metabolome profiling unveiled mechanisms of tea (Camellia sinensis) quality improvement by moderate drought on pre-harvest shoots. Phytochemistry. 180 (10), 112515. https://doi.org/10.1016/j.phytochem.2020.112515

    Article  CAS  PubMed  Google Scholar 

  4. Cheruiyot E.K., Mumera L.M., Ng’etich W.K., Hassanali A., Wachira F., Wanyoko J.K. 2008. Shoot epicatechin and epigallocatechin contents respond to water stress in tea [Camellia sinensis (L.) O. Kuntze]. Biosci. Biotech. Bioch. 72, 1219–1226. https://doi.org/10.1271/bbb.70698

  5. Upadhyaya H., Dutta B.K., Panda S.K. 2013. Zinc modulates drought-induced biochemical damages in tea [Camellia sinensis (L.) O. Kuntze]. J. Agric. Food Chem. 61, 6660–6670. https://doi.org/10.1021/jf304254z

    Article  CAS  PubMed  Google Scholar 

  6. Wang W., Xin H., Wang M., Ma Q., Wang L., Kaleri N.A., Wang Y., Li X. 2016. Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front. Plant Sci. 7, 385. https://doi.org/10.3389/fpls.2016.00385

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li X., Wei J.P., Ahammed G.J., Zhang L., Li Y., Yan P., Zhang L.P., Han W.Y. 2018. Brassinosteroids attenuate moderate high temperature-caused decline in tea quality by enhancing theanine biosynthesis in Camellia sinensis L. Front. Plant Sci. 9, 1016.https://doi.org/10.3389/fpls.2018.01016

  8. Wang L.Y., Wei K., Jiang Y.W., Cheng H., Zhou J., He W., Zhang C.C. 2011. Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur. Food Res. Technol. 233, 1049–1055. https://doi.org/10.1007/s00217-011-1588-4

    Article  CAS  Google Scholar 

  9. Zheng C., Wang Y., Ding Z.T., Zhao L. 2016. Global transcriptional analysis reveals the complex relationship between tea quality, leaf senescence and the responses to cold-drought combined stress in Camellia sinensis. Front. Plant Sci. 7, 1858. https://doi.org/10.3389/fpls.2016.01858

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qiao D., Yang C., Chen J., Guo Y., Li S. 2019. Comprehensive identification of the full-length transcripts and alternative splicing related to the secondary metabolism pathways in the tea plant (Camellia sinensis). Sci. Rep. 9, 2709. https://doi.org/10.1038/s41598-019-39286-z.

  11. Xu Q., Zhu J.Y., Zhao S., Yan H., Li F., Tai Y., Wan X., Wei C. 2017. Transcriptome profiling using single-molecule direct RNA sequencing approach for in-depth understanding of genes in secondary metabolism pathways of Camellia sinensis. Front. Plant Sci. 8, 1205. https://doi.org/10.3389/fpls.2017.01205

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhu J., Wang X., Guo L., Xu Q., Zhao S., Li F., Yan X., Liu S., Wei C. 2018. Characterization and alternative splicing profiles of lipoxygenase gene family in tea plant (Camellia sinensis). Plant Cell Physiol. 59 (9), 1765–1781. https://doi.org/10.1093/pcp/pcy091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ding Y.Q., Wang Y., Qiu C., Qian W., Xie H., Ding Z.T. 2020. Alternative splicing in tea plants was extensively triggered by drought, heat and their combined stresses. Peer J. 8, e8258https://doi.org/10.7717/peerj.8258

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhu J., Wang X., Xu Q., Zhao S., Tai Y., Wei C. 2018. Global dissection of alternative splicing uncovers transcriptional diversity in tissues and associates with the flavonoid pathway in tea plant (Camellia sinensis). BMC Plant Biol. 18 (1), 266. https://doi.org/10.1186/s12870-018-1497-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y., Mi X., Zhao S., Zhu J., Guo R., Xia X., Liu L., Liu S., Wei C. 2020. Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant. BMC Genom. 21, 65. https://doi.org/10.1186/s12864-020-6491-6

    Article  CAS  Google Scholar 

  16. Pertea M., Kim D., Pertea G.M., Leek J.T., Salzberg S.L. 2011. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667. https://doi.org/10.1038/nprot.2016.095

    Article  CAS  Google Scholar 

  17. Rogers M.F., Thomas J., Reddy A.S., Ben-Hur A. 2012. SpliceGrapher: Detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol. 13 (1), 1–17. http://genomebiology.com/2012/13/1/R4.

    Article  Google Scholar 

  18. Ding F., Cui P., Wang Z., Zhang S., Ali S., Xiong L. 2014. Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genom. 15, 431. https://doi.org/10.1186/1471-2164-15-431

  19. Keller M., Hu Y., Mesihovic A., Fragkostefanakis S., Simm S. 2016. Alternative splicing in tomato pollen in response to heat stress. DNA Res. 24, 205–217. https://doi.org/10.1093/dnares/dsw051

    Article  CAS  PubMed Central  Google Scholar 

  20. Thatcher S.R., Danilevskaya O.N., Meng X., Beatty M., Zastrow-Hayes G., Harris C., Allen B.V., Habben J.E., Li B. 2015. Genome-wide analysis of alternative splicing during development and drought stress in Zea mays. Plant Physiol. 170, 586–599. https://doi.org/10.1104/pp.15.01267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui P., Zhang S., Ding F., Ali S., Xiong L. 2014. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis. Genome Biol. 15, R1. https://doi.org/10.1186/gb-2014-15-1-r1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feng J., Li J., Gao Z., Lu Y., Yu J., Zheng Q., Yan S., Zhang W., He H., Ma L. 2015. SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol. Plant. 8, 1038–1052. https://doi.org/10.1016/j.molp.2015.01.011

  23. Wang Z., Ji H., Yuan B., Wang S., Su C., Yao B., Zhao H., Li X. 2015. ABA signalling is fine-tuned by antagonistic HAB1 variants. Nat. Commun. 6, 8138. https://doi.org/10.1038/ncomms9138

    Article  PubMed  Google Scholar 

  24. Park S.Y., Grabau E. 2016. Differential isoform expression and protein localization from alternatively spliced Apetala2 in peanut under drought stress. J. Plant Physiol. 206, 98–102. https://doi.org/10.1016/j.jplph.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  25. Shen Y., Wu X., Liu D., Song S., Liu D., Wang H. 2016. Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula. Biochem. Biophys. Res. Commun. 474, 271–276. https://doi.org/10.1016/j.bbrc.2016.04.062

    Article  CAS  PubMed  Google Scholar 

  26. Marquez Y., Brown J.W.S., Simpson C., Barta A., Kalyna M. 2012. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 22, 1184–1195. https://doi.org/10.1101/gr.134106.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Staiger D., Brown J.W.S. 2013. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell. 25, 3640–3656. https://doi.org/10.1105/tpc.113.113803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen Y., Zhou Z., Wang Z., Li W., Fang C., Wu M., Ma Y., Liu T., Kong L.-A., Peng D.-L. 2014. Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell. 26, 996–1008. https://doi.org/10.1105/tpc.114.122739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walters B., Lum G., Sablok G., Min X.J. 2013. Genome-wide landscape of alternative splicing events in Brachypodium distachyon. DNA Res. 20, 163–171. https://doi.org/10.1093/dnares/dss041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hatanaka A., Kajiwara T., Sekiya J. 1974. Alcohol dehydrogenanes from thea sinensis seeds. Agric. Biol. Chem. 38, 1835–1844. https://doi.org/10.1271/bbb1961.38.1835

    Article  CAS  Google Scholar 

  31. Shen J., Tieman D., Jones J.B., Taylor M.G., Schmelz E., Huffaker A., Bies D., Chen K., Klee H.J. 2014. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J. Exp. Bot. 65 (2), 419–428. https://doi.org/10.1093/jxb/ert382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu Q., Long C., Mei Y., Huang L., Zhu J., Mi X., Yu Y., Wei C. 2019. Alternative splicing of key genes in LOX pathway involves biosynthesis of volatile fatty acid derivatives in tea plant (Camellia sinensis). J. Agric. Food Chem. 67 (47), 13021–13032. https://doi.org/10.1021/acs.jafc.9b05925

    Article  CAS  PubMed  Google Scholar 

  33. Ren F., Mao H., Liang J., Liu J., Shu K., Wang Q. 2016. Functional characterization of ZmTPS7 reveals a maize τ-cadinol synthase involved in stress response. Planta. 244, 1065–1074. https://doi.org/10.1007/s00425-016-2570-y

  34. Liu G., Liu J., He Z., Wang F., Wei S. 2017. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant Cell Environ. 41, 176–186. https://doi.org/10.1111/pce.13080

    Article  CAS  PubMed  Google Scholar 

  35. Zhang G., Duan C., Wang Y., Wang Y., Leng P. 2013. The expression pattern of β-glucosidase genes (VvBGs) during grape berry maturation and dehydration stress. Plant Growth Regul. 70, 105–114. https://doi.org/10.1007/s10725-012-9782-3

    Article  CAS  Google Scholar 

  36. Li Y.Y., Jiang C.J., Wan X.C., Zhang Z.Z., Li D.X. 2005. Purification and partial characterization of β‑glucosidase from fresh leaves of tea plants (Camellia sinensis (L.) O. Kuntze). Acta Biochim. Biophys. Sin. 37, 363–370. https://doi.org/10.1111/j.1745-7270.2005.00053.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was subsidized by the Significant Application Projects of Agriculture Technology Innovation in Shandong Province (SD2019ZZ010), the Technology System of Modern Agricultural Industry in Shandong Province (SDAIT-19-01) and the Special Foundation for Distinguished Taishan Scholar of Shangdong Province (no. ts201712057), the Livelihood Project of Qingdao City (19-6-1-64-nsh), the Project of Agricultural Science and Technology Fund in Shandong Province (2019LY002, 2019YQ010), the Key Research and Development Project of Shandong Province (2019LYXZ009).

Author information

Authors and Affiliations

Authors

Contributions

Yiqian Ding and Kai Fan contributed equally to this article. Writing-Original Draft Preparation, Yiqian Ding; Writing-Review & Editing, Kai Fan and Zhaotang Ding; Methodology, Yu Wang and Liang Chen; Validation, Yiqian Ding and Litao Sun; Data Curation, Xujun Zhu; Software, Wanping Fang and Chen Qiu; Funding Acquisition, Zhaotang Ding.

Corresponding author

Correspondence to Z. T. Ding.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

The text was submitted by the author(s) in English.

Abbreviations: ADH, alcohol dehydrogenase-like; AGXT2, alanine-glyoxylate aminotransferase 2; ALT, alanine transaminase; ANR, anthocyanidin reductase; argB, acetylglutamate kinase; CAD, cinnamyl alcohol dehydrogenase; CCD1, carotenoid cleavage dioxygenase 1; CHI, chalcone isomerase; DFR, dihydrofavonol-4-reductase; DFRA, dihydrofavonol-4-reductase-like; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; DXS, probable 1-deoxy-D-xylulose-5-phosphate synthase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; FPPS, farnesyl pyrophosphate synthase; GAD, glutamate decarboxylase; GDH, glutamate dehydrogenase; GGPPS1, geranylgeranyl diphosphate synthase 1; GOGAT1 (NADH), NADH-glutamate synthase; GS, glutamine synthetase; β‑GLU, beta-glucosidase; IDI, isopentenyl diphosphate isomerase; ilvE, branched-chain-amino-acid aminotransferase; leuA, 2-isopropylmalate synthase A-like; leuB, 3-isopropylmalate dehydrogenase; leuC, 3- isopropylmalate dehydrogenase large subunit; leuD, 3-isopropylmalate dehydrogenase small subunit; LIS, linalool synthase; LOX, lipoxygenase; lysC, aspartokinase; NADP-GDH, NADP-specific glutamate dehydrogenase; NAGS, amino-acid acetyltransferase; P5CDH, delta-1-pyrroline-5-carboxylate dehydrogenase; P5CS, pyrroline-5-carboxylate synthetase; PAL, phenylalanine ammonia-lyase; PMK, phosphomevalonate kinase; SHMT, serine hydroxy-methyltransferase; TES, (−)-alpha-terpineol synthase; thrA, bifunctional aspartokinase/homoserine dehydrogenase 1, chloroplast-like; thrC, threonine synthase, chloroplast-like; TPS, terpenoid/terpene synthase; VAT, acetolactate synthase small subunit.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y.Q., Fan, K., Wang, Y. et al. Drought and Heat Stress-Mediated Modulation of Alternative Splicing in the Genes Involved in Biosynthesis of Metabolites Related to Tea Quality. Mol Biol 56, 257–268 (2022). https://doi.org/10.1134/S0026893322020042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322020042

Keywords:

Navigation