Skip to main content
Log in

The expression pattern of β-glucosidase genes (VvBGs) during grape berry maturation and dehydration stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In order to understand more about the role of β-glucosidase gene expression in modulating ABA level, the expression pattern of three cDNAs (VvBG1, VvBG2 and VvBG3) which encode β-glucosidase in ripening grape berries was analyzed in the presence or absence of dehydration stress. The results show that expression of these three VvBG genes was markedly different. Expression of VvBG1 and VvBG2 increased rapidly from véraison to reach a maximum at harvest or several days immediately before harvest, and coincident with ABA accumulation during berry development and ripening. However, expression of VvBG3 differed from VvBG1 and VvBG2 in that transcript levels declined from the early young fruit stage through véraison after which there was no further change. At 10 days before harvest, dehydration treatment of detached grape berries up-regulated the expression of VvBG1 and enhanced ABA accumulation whereas the expression of VvBG2 was down-regulated, VvBG3 was unaffected by dehydration stress. However, in the leaves, dehydration treatment up-regulated the expression of VvBG1 and stimulated the accumulation of ABA but down-regulated expression of VvBG2 and VvBG3. Based on the results obtained, it is concluded that the expression pattern of the three VvBGs is both temporal and tissue specific. Furthermore, expression of the VvBGs might play a role in the regulation of ABA content during berry ripening and in the response of berries to dehydration stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    Article  PubMed  CAS  Google Scholar 

  • Barthe P, Garello G, Bianco-Trinchant J, Le Page-Degivry MT (2000) Oxygen availability and ABA metabolism in Fagus sylvatica seeds. Plant Growth Regul 30:185–191

    Article  CAS  Google Scholar 

  • Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180

    Article  PubMed  CAS  Google Scholar 

  • Chernys JT, Zeevaart JAD (2007) Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124:343–353

    Article  Google Scholar 

  • Cowan AK (2001) Abscisic acid biosynthesis in vascular plants is a constitutive process. S Afr J Bot 67:497–505

    CAS  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429

    Article  PubMed  Google Scholar 

  • Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Merillon JM, Cushman JC, Cramer GR (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10:212

    Article  PubMed  Google Scholar 

  • Esen A (1993) β-Glucosidases. ACS Symp Ser 533:1–14

    Article  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  PubMed  CAS  Google Scholar 

  • Huang CL, Zhang DP, Jia WS (2001) A study of the sources of abscisic acid in grape berry during its late developmental phases. Acta Horticulturae Sinica 28:385–391

    Google Scholar 

  • Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) Tomato agamous-like 1 is a component of the fruit ripening regulatory network. Plant J 60:1081–1095

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Shinozaki KY, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  PubMed  CAS  Google Scholar 

  • Ji K, Chen P, Sun L, Wang YP, Dai SJ, Li Q, Li P, Sun YF, Wu Y, Duan CR, Leng P (2012) Non-climacteric ripening in strawberry fruit is linked to ABA, FaNCED2 and FaCYP707A1. Funct Plant Biol 39:351–357

    Article  CAS  Google Scholar 

  • Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458–4676

    Article  PubMed  CAS  Google Scholar 

  • Kleczkowski K, Schell J, Bandur DR (1995) Phytohormone conjugates: nature and function. Plant Sci 14:283–298

    CAS  Google Scholar 

  • Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118:849–860

    Article  PubMed  CAS  Google Scholar 

  • Laurentin A, Edwards CA (2003) A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem 315:143–145

    Article  PubMed  CAS  Google Scholar 

  • Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed beta-glucosidase. J Biol Chem 270:15789–15797

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ (2006) Activation of glucosidase via stress-increases active pools of abscisic acid. Cell 126:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Lehmann H, Schutte HR (1980) Purification and characterization of an abscosic acid glucosylating enzyme from cell suspension cultures of macleaya microcarpa. Z Pflanzenphysiol 96:277–280

    CAS  Google Scholar 

  • Leng P, Zhang GL, Li XX, Wang LH, Zheng ZM (2009) Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ABA-regulated ethylene production in detached young persimmon calyx. Chin Sci Bull 54:2830–2838

    Article  CAS  Google Scholar 

  • Li Q, Li P, Sun L, Wang YP, Ji K, Sun YF, Dai SJ, Chen P, Duan CR, Leng P (2012) Expression analysis of β-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions. J Plant Physiol 169:78–85

    Article  PubMed  CAS  Google Scholar 

  • Long SZ, He YQ (2002) The corelation between titratable acid and vitamin C test in Litchi. Guangxi Agric Sci 4:188–189 (in Chinese)

    Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Ann Rev Plant Biol 56:165–185

    Article  CAS  Google Scholar 

  • Okamoto M, Tanaka Y, Abrams SR, Kamiya Y, Seki M, Nambara E (2009) High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol 149:825–834

    Article  PubMed  CAS  Google Scholar 

  • Opassiri R, Cairns JRK, Akiyama T, Wara-Aswapati O, Svasti J, Esen A (2003) Characterization of a rice β-glucosidase highly expressed in flower and germinating shoot. Plant Sci 165:627–638

    Article  CAS  Google Scholar 

  • Oritani T, Kiyota H (2003) Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20:414–425

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Sun L, Wu JF, Zhao SL, Wang CL, Wang YP, Ji K, Leng P (2010) Cloning and expression analysis of cDNAs for ABA 8′-hydroxylase during sweet cherry fruit maturation and under stress conditions. J Plant Physiol 167:1486–1493

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Sun L, Wu JF, Zhao SL, Wang CL, Wang YP, Ji K, Leng P (2011) Expression analysis of the cDNA for Magnesium Chelatase H Subunit (CHLH) during sweet cherry fruit ripening and under stress conditions. Plant Growth Regul 63:301–307

    Article  CAS  Google Scholar 

  • Saito S, Hirai N, Matsumoto C et al (2004) Ara-bidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  PubMed  CAS  Google Scholar 

  • Schwarzkopf E, Miersch O (1992) In vitro glucosylation of dihydrojasmonic acid and abscisic acid. Biochemie und Physiologie der Pflanzen 188:57–65

    CAS  Google Scholar 

  • Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48

    Article  PubMed  CAS  Google Scholar 

  • Setha S, Kondo S, Hirai N, Ohigashi H (2005) Quantification of ABA and its metabolites in sweet cherries using deuterium-labeled internal standards. Plant Growth Regul 45:183–188

    Article  CAS  Google Scholar 

  • Sun L, Zhang M, Ren J, Qi JX, Zhang GJ, Leng P (2010) Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biol 10:257

    Article  PubMed  Google Scholar 

  • Sun L, Wang YP, Chen P, Ren J, Ji K, Li Q, Li P, Dai SJ, Leng P (2011) Transcriptional regulation of SlPYL, SlPP2C and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62:5659–5669

    Article  PubMed  CAS  Google Scholar 

  • Taylor IB, Burbidge A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51:1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Theologis A, Ecker JR, Palm CJ et al (2000) Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408:816–820

    Article  PubMed  Google Scholar 

  • Tieman DM, Taylor MG, Ciardi JA, Klee HJ (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of the ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci USA 97:5663–5668

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the Tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47–58

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Okamoto M, Kushiro T et al (2006) CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171–182

    Article  PubMed  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  PubMed  CAS  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Trimbur D, Graham R, Warren RAJ, Withers SG (1995) Identification of the acid/base catalyst in Agrobacterium faecalis beta-glucosidase by kinetic-analysis of mutants. Biochemistry 34:14554–14562

    Article  PubMed  CAS  Google Scholar 

  • Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression od abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res 15:195–204

    Article  CAS  Google Scholar 

  • Withers SG, Warren RAJ, Street IP, Rupitz K, Kempton JB, Aebersold R (1990) Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a retaining glycosidase. J Am Chem Soc 112:5887–5889

    Article  CAS  Google Scholar 

  • Xu XF, Luo GG, Peng YB (1995) Dynamics and characteristics of berry growth and development of grape (Vitis vinifera L. cv.Muscat Hamburg). Acta Horticulturae sinica 22:318–322

    Google Scholar 

  • Xu ZJ, Nakajima M, Suzuki Y, Yamaguchi I (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from Adzuki bean seedlings. Plant Physiol 129:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Yen H, Lee S, Tanksley S, Lanahan M, Klee HJ, Giovannoni JJ (1995) The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homologue of the Arabidopsis ETR1 gene. Plant Physiol 107:1343–1353

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD (1999) Abscisic acid metabolism and its regulation. Biochem Mol Biol Plant Horm 33:189–207

    Article  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA (1998) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  Google Scholar 

  • Zegzouti H, Jones B, Frasse P, Marty C, Maitre B, Latche′ A, Pech JC, Bouzayen M (1999) Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-related genes isolated by differential display. Plant J 18:589–600

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Yuan B, Leng P (2009a) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Leng P, Zhang GL, Li XX (2009b) Cloning and function alanalysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J Plant Physiol 166:1241–1252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Leng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Duan, C., Wang, Y. et al. The expression pattern of β-glucosidase genes (VvBGs) during grape berry maturation and dehydration stress. Plant Growth Regul 70, 105–114 (2013). https://doi.org/10.1007/s10725-012-9782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9782-3

Keywords

Navigation