Skip to main content
Log in

3D Genomics

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The development of new research methods significantly changed our views on the role that the 3D organization of the genome plays in its functional activity. It was found that the genome is subdivided into structural-functional units that restrict the area of enhancer action at the level of spatial organization. Spatial reconfiguration of an extended genomic fragment was identified as a potential mechanism that activates or represses various genes. Accordingly, a distorted spatial organization of the genome often causes various diseases, including cancer. All these observations contributed to the emergence of 3D genomics as a new avenue of research. The review summarizes the most important discoveries in the field of 3D genomics and discusses the directions of its further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Osborne C.S., Chakalova L., Brown K.E., Carter D., Horton A., Debrand E., Goyenechea B., Mitchell J.A., Lopes S., Reik W., Fraser P. 2004. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36 (10), 1065‒1071.

    Article  CAS  PubMed  Google Scholar 

  2. Schoenfelder S., Sexton T., Chakalova L., Cope N.F., Horton A., Andrews S., Kurukuti S., Mitchell J.A., Umlauf D., Dimitrova D.S., Eskiw C.H., Luo Y., Wei C.L., Ruan Y., Bieker J.J., Fraser P. 2010. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42 (1), 53‒61.

    Article  CAS  PubMed  Google Scholar 

  3. Williamson I., Lettice L.A., Hill R.E., Bickmore W.A. 2016. Shh and ZRS enhancer colocalization is specific to the zone of polarizing activity. Development. 143 (16), 2994‒3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dekker J., Rippe K., Dekker M., Kleckner N. 2002. Capturing chromosome conformation. Science. 295 (5558), 1306‒1311.

    Article  CAS  PubMed  Google Scholar 

  5. Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A., et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326 (5950), 289‒293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rao S.S., Huntley M.H., Durand N.C., Stamenova E.K., Bochkov I.D., Robinson J.T., Sanborn A.L., Machol I., Omer A.D., Lander E.S., Aiden E.L. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 159 (7), 1665‒1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dekker J., Misteli T. 2015. Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol. 7 (10), a019356.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Sanyal A., Lajoie B.R., Jain G., Dekker J. 2012. The long-range interaction landscape of gene promoters. Nature. 489 (7414), 109‒113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng W., Lee J., Wang H., Miller J., Reik A., Gregory P.D., Dean A., Blobel G.A. 2012. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell. 149 (6), 1233‒1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Breda L., Motta I., Lourenco S., Gemmo C., Deng W., Rupon J.W., Abdulmalik O.Y., Manwani D., Blobel G.A., Rivella S. 2016. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood. 128 (8), 1139‒1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nora E.P., Dekker J., Heard E. 2013. Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods? BioEssays. 35 (9), 818‒828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Valton A.L., Dekker J. 2016. TAD disruption as oncogenic driver. Curr. Opin. Genet. Dev. 36, 34‒40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lupianez D.G., Kraft K., Heinrich V., Krawitz P., Brancati F., Klopocki E., Horn D., Kayserili H., Opitz J.M., Laxova R, Santos-Simarro F., Gilbert-Dussardier B., Wittler L., Borschiwer M., Haas S.A., et al. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 161 (5), 1012‒1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lupianez D.G., Spielmann M., Mundlos S. 2016. Breaking TADs: How alterations of chromatin domains result in disease. Trends Genet. 32 (4), 225‒237.

    Article  CAS  PubMed  Google Scholar 

  15. Krijger P.H., de Laat W. 2016. Regulation of disease-associated gene expression in the 3D genome. Nat. Rev. Mol. Cell. Biol. 17 (12), 771‒782.

    Article  CAS  PubMed  Google Scholar 

  16. Kantidze O.L., Luzhin A.V., Nizovtseva E.V., Safina A., Valieva M.E., Golov A.K., Velichko A.K., Lyubitelev A.V., Feofanov A.V., Gurova K.V., Studitsky V.M., Razin S.V. 2019. The anti-cancer drugs curaxins target spatial genome organization. Nat. Commun. 10 (1), 1441.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Razin S.V., Vassetzky Y.S. 2017. 3D genomics imposes evolution of the domain model of eukaryotic genome organization. Chromosoma. 126, 59‒69.

    Article  CAS  PubMed  Google Scholar 

  18. Razin S.V., Gavrilov A.A. 2014. Chromatin without the 30-nm fiber: Constrained disorder instead of hierarchical folding. Epigenetics. 9 (5), 653‒657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Getzenberg R.H., Pienta K.J., Ward W.S., Coffey D.S. 1991. Nuclear structure and the three-dimensional organization of DNA. J. Cell. Biochem. 47 (4), 289‒299.

    Article  CAS  PubMed  Google Scholar 

  20. Ou H.D., Phan S., Deerinck T.J., Thor A., Ellisman M.H., O’Shea C.C. 2017. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science. 357 (6349), eaag0025.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Fussner E., Strauss M., Djuric U., Li R., Ahmed K., Hart M., Ellis J., Bazett-Jones D.P. 2012. Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep. 13 (11), 992‒996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eltsov M., Maclellan K.M., Maeshima K., Frangakis A.S., Dubochet J. 2008. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ.Proc. Natl. Acad. Sci. U. S. A.105 (50), 19732‒19737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ricci M.A., Manzo C., Garcia-Parajo M.F., Lakadamyali M., Cosma M.P. 2015. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell. 160 (6), 1145‒1158.

    Article  CAS  PubMed  Google Scholar 

  24. Maeshima K., Imai R., Hikima T., Joti Y. 2014. Chromatin structure revealed by X-ray scattering analysis and computational modeling. Methods. 70 (2‒3), 154‒161.

    Article  CAS  PubMed  Google Scholar 

  25. Maeshima K., Imai R., Tamura S., Nozaki T. 2014. Chromatin as dynamic 10-nm fibers. Chromosoma. 123(3), 225‒237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maeshima K., Rogge R., Tamura S., Joti Y., Hikima T., Szerlong H., Krause C., Herman J., Seidel E., DeLuca J., Ishikawa T., Hansen J.C. 2016. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J.35 (10), 1115‒1132. https://doi.org/10.15252/embj.201592660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hansen J.C., Connolly M., McDonald C.J., Pan A., Pryamkova A ., Ray K., Seidel E., Tamura S., Rogge R., Maeshima K. 2018. The 10-nm chromatin fiber and its relationship to interphase chromosome organization. Biochem. Soc. Trans. 46 (1), 67‒76.

    Article  CAS  PubMed  Google Scholar 

  28. Cremer T., Cremer M. 2010. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2 (3), a003889.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Cremer T., Cremer M., Dietzel S., Muller S., Solovei I., Fakan S. 2006. Chromosome territories: A functional nuclear landscape. Curr. Opin. Cell. Biol. 18 (3), 307‒316.

    Article  CAS  PubMed  Google Scholar 

  30. Kolbl A.C., Weigl D., Mulaw M., Thormeyer T., Bohlander S.K., Cremer T., Dietzel S. 2012. The radial nuclear positioning of genes correlates with features of megabase-sized chromatin domains. Chromosome Res. 20 (6), 735‒752.

    Article  PubMed  CAS  Google Scholar 

  31. Smeets D., Markaki Y., Schmid V.J., Kraus F., Tattermusch A., Cerase A., Sterr M., Fiedler S., Demmerle J., Popken J., Leonhardt H., Brockdorff N., Cremer T., Schermelleh L., Cremer M. 2014. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin. 7, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dixon J.R., Gorkin D.U., Ren B. 2016. Chromatin domains: The unit of chromosome organization. Mol. Cell. 62 (5), 668‒680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dixon J.R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 485 (7398), 376‒380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sexton T., Yaffe E., Kenigsberg E., Bantignies F., Leblanc B., Hoichman M., Parrinello H., Tanay A., Cavalli G. 2012. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell. 148 (3), 458‒472.

    Article  CAS  PubMed  Google Scholar 

  35. Nora E.P., Lajoie B.R., Schulz E.G., Giorgetti L., Okamoto I., Servant N., Piolot T., van Berkum N.L., Meisig J., Sedat J., Gribnau J., Barillot E., Bluthgen N., Dekker J., Heard E. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature485 (7398), 381‒385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Szabo Q., Jost D., Chang J.M., Cattoni D.I., Papadopoulos G.L., Bonev B., Sexton T., Gurgo J., Jacquier C., Nollmann M., Bantignies F., Cavalli G. 2018. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv.4 (2), eaar8082.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Stevens T.J., Lando D., Basu S., Atkinson L.P., Cao Y., Lee S.F., Leeb M., Wohlfahrt K.J., Boucher W., O’Shaughnessy-Kirwan A., Cramard J., Faure A.J., Ralser M., Blanco E., Morey L., et al. 2017. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature. 544 (7648), 59‒64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bodnar J.W. 1988. A domain model for eukaryotic DNA organization: A molecular basis for cell differentiation and chromosome evolution. J. Theor. Biol. 132 (4), 479‒507.

    Article  CAS  PubMed  Google Scholar 

  39. Goldman M.A. 1988. The chromatin domain as a unit of gene regulation. BioEssays. 9, 50‒55.

    Article  CAS  PubMed  Google Scholar 

  40. Forrester W.C., Epner E., Driscoll M.C., Enver T., Brice M., Papayannopoulou T., Groudine M. 1990. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Gene Dev. 4, 1637‒1649.

    Article  CAS  PubMed  Google Scholar 

  41. Grosveld F., van Assandelt G.B., Greaves D.R., Kollias B. 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell. 51, 975‒985.

    Article  CAS  PubMed  Google Scholar 

  42. Kellum R., Schedl P. 1991. A position-effect assay for boundaries of higher-order chromosomal domains. Cell. 64, 941‒950.

    Article  CAS  PubMed  Google Scholar 

  43. Kellum R., Schedl P. 1992. A group of scs elements function as boundaries in enhancer-blocking assay. Mol. Cell. Biol. 12, 2424‒2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chung J.H., Whiteley M., Felsenfeld G. 1993. A 5' element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila.Cell. 74 (3), 505‒514.

    Article  CAS  PubMed  Google Scholar 

  45. Jarman A.P., Wood W.G., Sharpe J.A., Gourdon G., Ayyub H., Higgs D.R. 1991. Characterization of the major regulatory element upstream of the human α‑globin gene cluster. Mol. Cell. Biol. 11, 4679‒4689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Recillas-Targa F., Razin S.V. 2001. Chromatin domains and regulation of gene expression: Familiar and enigmatic clusters of chicken globin genes. Crit. Rev. Eukaryot. Gene Expr. 11, 227‒242.

    CAS  PubMed  Google Scholar 

  47. Razin S.V., Farrell C.M., Recillas-Targa F. 2003. Genomic domains and regulatory elements operating at the domain level. Int. Rev. Cytol. 226, 63‒25.

    Article  CAS  PubMed  Google Scholar 

  48. Dillon N., Sabbatini P. 2000. Functional gene expression domains: Defining the functional units of eukaryotic gene regulation. BioEssays. 22, 657‒665.

    Article  CAS  PubMed  Google Scholar 

  49. Arnold C.D., Gerlach D., Stelzer C., Boryn L.M., Rath M., Stark A. 2013. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 339 (6123), 1074‒1077.

    Article  CAS  PubMed  Google Scholar 

  50. Consortium E.P., Bernstein B.E., Birney E., Dunham I., Green E.D., Gunter C., Snyder M. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature. 489 (7414), 57‒74.

    Article  CAS  Google Scholar 

  51. Furlong E.E.M., Levine M. 2018. Developmental enhancers and chromosome topology. Science. 361 (6409), 1341‒1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hnisz D., Shrinivas K., Young R.A., Chakraborty A.K., Sharp P.A. 2017. A phase separation model for transcriptional control. Cell. 169 (1), 13‒23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sabari B.R., Dall’Agnese A., Boija A., Klein I.A., Coffey E.L., Shrinivas K., Abraham B.J., Hannett N.M., Zamudio A.V., Manteiga J.C., Li C.H., Guo Y.E., Day D.S., Schuijers J., Vasile E., et al. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science. 361 (6400), eaar3958.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Gurumurthy A., Shen Y., Gunn E.M., Bungert J. 2019. Phase separation and transcription regulation: Are super-enhancers and locus control regions primary sites of transcription complex assembly? BioEssays. 41 (1), e1800164.

    Article  PubMed  CAS  Google Scholar 

  55. Hahn S. 2018. Phase separation, protein disorder, and enhancer function. Cell. 175 (7), 1723‒1725.

    Article  CAS  PubMed  Google Scholar 

  56. Tolhuis B., Palstra R.J., Splinter E., Grosveld F., de Laat W. 2002. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell. 10 (6), 1453‒1465.

    Article  CAS  PubMed  Google Scholar 

  57. Palstra R.J., Tolhuis B., Splinter E., Nijmeijer R., Grosveld F., de Laat W. 2003. The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35 (2), 190‒194.

    Article  CAS  PubMed  Google Scholar 

  58. Philonenko E.S., Klochkov D.B., Borunova V.V., Gavrilov A.A., Razin S.V., Iarovaia O.V. 2009. TMEM8: A non-globin gene entrapped in the globin web. Nucleic Acids Res. 37 (22), 7394‒7406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vernimmen D., Marques-Kranc F., Sharpe J.A., Sloane-Stanley J.A., Wood W.G., Wallace H.A., Smith A.J., Higgs D.R. 2009. Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS-40). Blood. 114 (19), 4253‒4260.

    Article  CAS  PubMed  Google Scholar 

  60. Novo C.L., Javierre B.M., Cairns J., Segonds-Pichon A., Wingett S.W., Freire-Pritchett P., Furlan-Magaril M., Schoenfelder S., Fraser P., Rugg-Gunn P.J. 2018. Long-range enhancer interactions are prevalent in mouse embryonic stem cells and are reorganized upon pluripotent state transition. Cell Rept. 22 (10), 2615‒2627.

    Article  CAS  Google Scholar 

  61. Schoenfelder S., Javierre B.M., Furlan-Magaril M., Wingett S.W., Fraser P. 2018. Promoter capture Hi-C: high-resolution, genome-wide profiling of promoter interactions. J. Vis. Exp.136, e57320. https://doi.org/10.3791/57320

    Article  CAS  Google Scholar 

  62. Li T., Jia L., Cao Y., Chen Q., Li C. 2018. OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Genome Biol. 19 (1), 54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Zheng M., Tian S.Z., Capurso D., Kim M., Maurya R., Lee B., Piecuch E., Gong L., Zhu J.J., Li Z., Wong C.H., Ngan C.Y., Wang P., Ruan X., Wei C.L., Ruan Y. 2019. Multiplex chromatin interactions with single-molecule precision. Nature. 566 (7745), 558‒562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Symmons O., Uslu V.V., Tsujimura T., Ruf S., Nassari S., Schwarzer W., Ettwiller L., Spitz F. 2014. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24 (3), 390‒400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Montavon T., Soshnikova N., Mascrez B., Joye E., Thevenet L., Splinter E., de Laat W., Spitz F., Duboule D. 2011. A regulatory archipelago controls Hox genes transcription in digits. Cell. 147 (5), 1132‒1145.

    Article  CAS  PubMed  Google Scholar 

  66. Montavon T., Duboule D. 2012. Landscapes and archipelagos: Spatial organization of gene regulation in vertebrates. Trends Cell Biol. 22 (7), 347‒354.

    Article  CAS  PubMed  Google Scholar 

  67. Hnisz D., Day D.S., Young R.A. 2016. Insulated neighborhoods: Structural and functional units of mammalian gene control. Cell. 167 (5), 1188‒1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hnisz D., Weintraub A.S., Day D.S., Valton A.L., Bak R.O., Li C.H., Goldmann J., Lajoie B.R., Fan Z.P., Sigova A.A., Reddy J., Borges-Rivera D., Lee T.I., Jaenisch R., Porteus M.H., et al. 2016. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 351 (6280), 1454–1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun F., Chronis C., Kronenberg M., Chen X.F., Su T., Lay F.D., Plath K., Kurdistani S.K., Carey M.F. 2019. Promoter-enhancer communication occurs primarily within insulated neighborhoods. Mol. Cell. 73 (2), 250‒263, e255.

    Article  PubMed  CAS  Google Scholar 

  70. Smith E.M., Lajoie B.R., Jain G., Dekker J. 2016. Invariant TAD boundaries constrain cell-type-specific looping interactions between promoters and distal elements around the CFTR locus. Am. J. Hum. Genet. 98 (1), 185‒201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krefting J., Andrade-Navarro M.A., Ibn-Salem J. 2018. Evolutionary stability of topologically associating domains is associated with conserved gene regulation. BMC Biol. 16 (1), 87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Ong C.T., Corces V.G. 2014. CTCF: An architectural protein bridging genome topology and function. Nat. Rev. Genet. 15 (4), 234‒246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wutz G., Varnai C., Nagasaka K., Cisneros D.A., Stocsits R.R., Tang W., Schoenfelder S., Jessberger G., Muhar M., Hossain M.J., Walther N., Koch B., Kueblbeck M., Ellenberg J., Zuber J., et al. 2017. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J.36 (24), 3573‒3599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uuskula-Reimand L., Hou H., Samavarchi-Tehrani P., Rudan M.V., Liang M., Medina-Rivera A., Mohammed H., Schmidt D., Schwalie P., Young E.J., Reimand J., Hadjur S., Gingras A.C., Wilson M.D. 2016. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 17 (1), 182.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Van Bortle K., Nichols M.H., Li L., Ong C.T., Takenaka N., Qin Z.S., Corces V.G. 2014. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 15 (5), R82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Nora E.P., Goloborodko A., Valton A.L., Gibcus J.H., Uebersohn A., Abdennur N., Dekker J., Mirny L.A., Bruneau B.G. 2017. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell. 169 (5), 930‒944, e922.

  77. Narendra V., Bulajic M., Dekker J., Mazzoni E.O., Reinberg D. 2016. CTCF-mediated topological boundaries during development foster appropriate gene regulation. Genes Dev. 30 (24), 2657‒2662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Narendra V., Rocha P.P., An D., Raviram R., Skok J.A., Mazzoni E.O., Reinberg D. 2015. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science. 347 (6225), 1017‒1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Klenova E.M., Nicolas R.H., Paterson H.F., Carne A.F., Heath C.M., Goodwin G.H., Neiman P.E., Lobanenkov V.V. 1993. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms. Mol. Cell. Biol. 13 (12), 7612‒7624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bell A.C., West A.G., Felsenfeld G. 1999. The protein CTCF is required for the enhancer-blocking activity of vertebrate insulators. Cell. 98, 387‒396.

    Article  CAS  PubMed  Google Scholar 

  81. Farrell C.M., West A.G., Felsenfeld G. 2002. Conserved CTCF insulator elements flank the mouse and human β-globin loci. Mol. Cell. Biol. 22, 3820‒3831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hark A.T., Schoenherr C.J., Katz D.J., Ingram R.S., Levorse J.M., Tilghman S.M. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 405, 486‒489.

    Article  CAS  PubMed  Google Scholar 

  83. Holwerda S.J., de Laat W. 2013. CTCF: The protein, the binding partners, the binding sites and their chromatin loops. Philos. Trans. R. Soc. Lond. B.368(1620), 20120369.

    Article  CAS  Google Scholar 

  84. Hou C., Zhao H., Tanimoto K., Dean A. 2008. CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc. Natl. Acad. Sci. U. S. A.105 (51), 20398‒20403.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Phillips J.E., Corces V.G. 2009. CTCF: Master weaver of the genome. Cell. 137 (7), 1194‒1211.

    Article  PubMed  PubMed Central  Google Scholar 

  86. de Wit E., Vos E.S., Holwerda S.J., Valdes-Quezada C., Verstegen M.J., Teunissen H., Splinter E., Wijchers P.J., Krijger P.H., de Laat W. 2015. CTCF binding polarity determines chromatin looping. Mol. Cell. 60 (4), 676‒684.

    Article  CAS  PubMed  Google Scholar 

  87. Guo Y., Xu Q., Canzio D., Shou J., Li J., Gorkin D.U., Jung I., Wu H., Zhai Y., Tang Y., Lu Y., Wu Y., Jia Z., Li W., Zhang M.Q., et al. 2015. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell. 162 (4), 900‒910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sanborn A.L., Rao S.S., Huang S.C., Durand N.C., Huntley M.H., Jewett A.I., Bochkov I.D., Chinnappan D., Cutkosky A., Li J., Geeting K.P., Gnirke A., Melnikov A., McKenna D., Stamenova E.K., et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. U. S. A.112 (47), E6456‒E6465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fudenberg G., Imakaev M., Lu C., Goloborodko A., Abdennur N., Mirny L.A. 2016. Formation of chromosomal domains by loop extrusion. Cell Rept. 15(9), 2038‒2049.

    Article  CAS  Google Scholar 

  90. Ganji M., Shaltiel I.A., Bisht S., Kim E., Kalichava A., Haering C.H., Dekker C. 2018. Real-time imaging of DNA loop extrusion by condensin. Science. 360 (6384), 102‒105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vian L., Pekowska A., Rao S.S.P., Kieffer-Kwon K.R., Jung S., Baranello L., Huang S.C., El Khattabi L., Dose M., Pruett N., Sanborn A.L., Canela A., Maman Y., Oksanen A., Resch W., et al. 2018. The energetics and physiological impact of cohesin extrusion. Cell. 173 (5), 1165‒1178. e1120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Rao S.S.P., Huang S.C., Glenn St Hilaire B., Engreitz J.M., Perez E.M., Kieffer-Kwon K.R., Sanborn A.L., Johnstone S.E., Bascom G.D., Bochkov I.D., Huang X., Shamim M.S., Shin J., Turner D., Ye Z., et al. 2017. Cohesin loss eliminates all loop domains. Cell. 171 (2), 305‒320. e324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Schwarzer W., Abdennur N., Goloborodko A., Pekowska A., Fudenberg G., Loe-Mie Y., Fonseca N.A., Huber W., C H.H., Mirny L., Spitz F. 2017. Two independent modes of chromatin organization revealed by cohesin removal. Nature. 551 (7678), 51‒56.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nuebler J., Fudenberg G., Imakaev M., Abdennur N., Mirny L.A. 2018. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl. Acad. Sci. U. S. A.115 (29), E6697‒E6706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rowley M.J., Corces V.G. 2018. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19 (12), 789‒800.

    Article  CAS  PubMed  Google Scholar 

  96. Rowley M.J., Nichols M.H., Lyu X., Ando-Kuri M., Rivera I.S.M., Hermetz K., Wang P., Ruan Y., Corces V.G. 2017. Evolutionarily conserved principles predict 3D cromatin organization. Mol. Cell. 67 (5), 837‒852. e7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Ulianov S.V., Khrameeva E.E., Gavrilov A.A., Flyamer I.M., Kos P., Mikhaleva E.A., Penin A.A., Logacheva M.D., Imakaev M.V., Chertovich A., Gelfand M.S., Shevelyov Y.Y., Razin S.V. 2016. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 26 (1), 70‒84.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gavrilov A.A., Shevelyov Y.Y., Ulianov S.V., Khrameeva E.E., Kos P., Chertovich A., Razin S.V. 2016. Unraveling the mechanisms of chromatin fibril packaging. Nucleus. 7 (3), 319‒324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Razin S.V., Gavrilov A.A., Vassetzky Y.S., Ulianov S.V. 2016. Topologically-associating domains: gene warehouses adapted to serve transcriptional regulation. Transcription. 7 (3), 84‒90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Luzhin A.V., Flyamer I.M., Khrameeva E.E., Ulianov S.V., Razin S.V., Gavrilov A.A. 2019. Quantitative differences in TAD border strength underly the TAD hierarchy in Drosophila chromosomes. J. Cell. Biochem. 120 (3), 4494‒4503.

    Article  CAS  PubMed  Google Scholar 

  101. Rada-Iglesias A., Grosveld F.G., Papantonis A. 2018. Forces driving the three-dimensional folding of eukaryotic genomes. Mol. Systems Biol. 14 (6), e8214.

    Article  CAS  Google Scholar 

  102. Weinreb C., Raphael B.J. 2016. Identification of hierarchical chromatin domains. Bioinformatics. 32 (11), 1601‒1609.

    Article  CAS  PubMed  Google Scholar 

  103. Wang X.T., Cui W., Peng C. 2017. HiTAD: Detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions. Nucleic Acids Res. 45 (19), e163.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  104. Zhan Y., Mariani L., Barozzi I., Schulz E.G., Bluthgen N., Stadler M., Tiana G., Giorgetti L. 2017. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res. 27 (3), 479‒490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ulianov S.V., Tachibana-Konwalski K., Razin S.V. 2017. Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization. BioEssays. 39 (10), 1700104.

    Article  CAS  Google Scholar 

  106. Nagano T., Lubling Y., Stevens T.J., Schoenfelder S., Yaffe E., Dean W., Laue E.D., Tanay A., Fraser P. 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 502 (7469), 59‒64.

    Article  CAS  PubMed  Google Scholar 

  107. Nagano T., Lubling Y., Varnai C., Dudley C., Leung W., Baran Y., Mendelson Cohen N., Wingett S., Fraser P., Tanay A. 2017. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature. 547 (7661), 61‒67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Flyamer I.M., Gassler J., Imakaev M., Brandao H.B., Ulianov S.V., Abdennur N., Razin S.V., Mirny L.A., Tachibana-Konwalski K. 2017. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature. 544 (7648), 110‒114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ramani V., Deng X., Qiu R., Gunderson K.L., Steemers F.J., Disteche C.M., Noble W.S., Duan Z., Shendure J. 2017. Massively multiplex single-cell Hi-C. Nat. Methods.14 (3), 263‒266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cremer T., Cremer C. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2 (4), 292‒301.

    Article  CAS  PubMed  Google Scholar 

  111. Cremer T., Cremer M., Cremer C. 2018. The 4D nucleome: Genome compartmentalization in an evolutionary context. Biochemistry (Moscow). 83 (4), 4313–325.

    Google Scholar 

  112. Hancock R. 2004. A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J. Struct. Biol.146 (3), 281‒290.

    Article  CAS  PubMed  Google Scholar 

  113. Ulianov S.V., Gavrilov A.A., Razin S.V. 2015. Nuclear compartments, genome folding, and enhancer-promoter communication. Internat. Rev. Cell Mol. Biol. 315, 183‒244.

    Article  CAS  Google Scholar 

  114. Brown J.M., Green J., das Neves R.P., Wallace H.A., Smith A.J., Hughes J., Gray N., Taylor S., Wood W.G., Higgs D.R., Iborra F.J., Buckle V.J. 2008. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell. Biol. 182 (6), 1083‒1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang Q., Sawyer I.A., Sung M.H., Sturgill D., Shevtsov S.P., Pegoraro G., Hakim O., Baek S., Hager G.L., Dundr M. 2016. Cajal bodies are linked to genome conformation. Nat. Commun.7, 10966. https://doi.org/10.1038/ncomms10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guelen L., Pagie L., Brasset E., Meuleman W., Faza M.B., Talhout W., Eussen B.H., de Klein A., Wessels L., de Laat W., van Steensel B. 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 453 (7197), 948‒951.

    Article  CAS  PubMed  Google Scholar 

  117. Pickersgill H., Kalverda B., de Wit E., Talhout W., Fornerod M., van Steensel B. 2006. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38 (9), 1005‒1014.

    Article  CAS  PubMed  Google Scholar 

  118. van Steensel B., Belmont A.S. 2017. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell. 169 (5), 780‒791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kind J., van Steensel B. 2010. Genome–nuclear lamina interactions and gene regulation. Curr. Opin. Cell. Biol. 22 (3), 320‒325.

    Article  CAS  PubMed  Google Scholar 

  120. Shevelyov Y.Y., Nurminsky D.I. 2012. The nuclear lamina as a gene-silencing hub. Curr. Issues Mol. Biol. 14 (1), 27‒38.

    CAS  PubMed  Google Scholar 

  121. Reddy K.L., Zullo J.M., Bertolino E., Singh H. 2008. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature. 452 (7184), 243‒247.

    Article  CAS  PubMed  Google Scholar 

  122. Fedoriw A.M., Starmer J., Yee D., Magnuson T. 2012. Nucleolar association and transcriptional inhibition through 5S rDNA in mammals. PLoS Genet. 8 (1), e1002468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Matheson T.D., Kaufman P.D. 2016. Grabbing the genome by the NADs. Chromosoma. 125 (3), 361‒371.

    Article  CAS  PubMed  Google Scholar 

  124. Politz J.C., Scalzo D., Groudine M. 2013. Something silent this way forms: The functional organization of the repressive nuclear compartment. Annu. Rev. Cell Dev. Biol.29, 241‒270.

    Article  CAS  PubMed  Google Scholar 

  125. Kind J., Pagie L., de Vries S.S., Nahidiazar L., Dey S.S., Bienko M., Zhan Y., Lajoie B., de Graaf C.A., Amendola M., Fudenberg G., Imakaev M., Mirny L.A., Jalink K., Dekker J., et al. 2015. Genome-wide maps of nuclear lamina interactions in single human cells. Cell. 163 (1), 134‒147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Beagrie R.A., Scialdone A., Schueler M., Kraemer D.C., Chotalia M., Xie S.Q., Barbieri M., de Santiago I., Lavitas L.M., Branco M.R., Fraser J., Dostie J., Game L., Dillon N., Edwards P.A., et al. 2017. Complex multi-enhancer contacts captured by genome architecture mapping. Nature. 543 (7646), 519‒524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Quinodoz S.A., Ollikainen N., Tabak B., Palla A., Schmidt J.M., Detmar E., Lai M.M., Shishkin A.A., Bhat P., Takei Y., Trinh V., Aznauryan E., Russell P., Cheng C., Jovanovic M., et al. 2018. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell. 174 (3), 744‒757. e724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  128. Chen Y., Zhang Y., Wang Y., Zhang L., Brinkman E.K., Adam S.A., Goldman R., van Steensel B., Ma J., Belmont A.S. 2018. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell. Biol. 217 (11), 4025‒4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang G., Achim C.L., Hamilton R.L., Wiley C.A., Soontornniyomkij V. 1999. Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy. Methods. 18 (4), 459‒464.

    Article  CAS  PubMed  Google Scholar 

  130. Golov A.K., Gavrilov A.A., Razin S.V. 2015. The role of crowding forces in juxtaposing beta-globin gene domain remote regulatory elements in mouse erythroid cells. PLoS One. 10 (10), e0139855.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Ulianov S.V., Doronin S.A., Khrameeva E.E., Kos P.I., Luzhin A.V., Starikov S.S., Galitsyna A.A., Nenasheva V.V., Ilyin A.A., Flyamer I.M., Mikhaleva E.A., Logacheva M.D., Gelfand M.S., Chertovich A.V., Gavrilov A.A., et al. 2019. Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila.Nat. Commun.10 (1), 1176.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-14-00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Razin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razin, S.V., Ulianov, S.V. & Gavrilov, A.A. 3D Genomics. Mol Biol 53, 802–812 (2019). https://doi.org/10.1134/S0026893319060153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319060153

Keywords:

Navigation