Skip to main content
Log in

Effect of Sodium Selenite on Gene Expression of SELF, SELW, and TGR Selenoproteins in Adenocarcinoma Cells of the Human Prostate

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Selenium is an essential trace element, the deficiency of which leads to the development of several serious diseases, including male infertility, prostate cancer, etc. It has been shown that oxidative stress contributes to the progression of prostate cancer, and antioxidants such as selenium and vitamin E can significantly reduce the risk of this disease. Sodium selenite, one of the selenium compounds that induce the formation of reactive oxygen species, is considered as a potential anticancer agent. The SS concentrations that lead to a decrease in the viability of human prostate adenocarcinoma cells (line Du-145) have been selected, and the effect of sodium selenite on the expression of mRNA of the SELV, SELW, and TGR selenocysteine proteins in these cells has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GAPDH:

glyceraldehyde-3-dehydrogenase

GPX:

glutathione peroxidase

IPTGP:

isopropyl β-D-1-thiogalactopyranoside

ORF:

open reading frame

ROS:

reactive oxygen species

Se:

selenium

Sec:

selenocysteine

SELV and SELW:

selenocysteine-containing proteins V and W

SS:

sodium selenite

TGR:

thioredoxin glutathione reductase

EPR:

endoplasmic reticulum

REL:

expression level of the studied gene relative to the expression of the reference gene

References

  1. Pieczyńska J., Grajeta H. 2015. The role of selenium in human conception and pregnancy. J. Trace Elem. Med. Biol. 29, 31–38.

    Article  PubMed  CAS  Google Scholar 

  2. Kaur S., Bansal M.P. 2015. Protective role of dietarysupplemented selenium and vitamin E in heat-induced apoptosis and oxidative stress in mice testes. Andrologia. 47, 1109–1119.

    Article  PubMed  CAS  Google Scholar 

  3. Song R., Yao X., Shi L., Ren Y., Zhao H. 2015. Effects of dietary selenium on apoptosis of germ cells in the testis during spermatogenesis in roosters. Theriogenology. 84, 583–588.

    Article  PubMed  CAS  Google Scholar 

  4. Ansar S., Abudawood M., Hamed S.S., Aleem M.M. 2017. Sodium selenite protects against silver nanoparticle-induced testicular toxicity and inflammation. Biol. Trace Elem. Res. 175, 161–168.

    Article  PubMed  CAS  Google Scholar 

  5. Shi L., Zhao H., Ren Y., et al. 2014. Effects of different levels of dietary selenium on the proliferation of spermatogonial stem cells and antioxidant status in testis of roosters. Anim. Reprod. Sci. 149, 266–272.

    Article  PubMed  CAS  Google Scholar 

  6. Ahsan U., Kamran Z., Raza I., et al. 2014. Role of selenium in male reproduction: A review. Anim. Reprod. Sci. 146, 55–62.

    Article  PubMed  CAS  Google Scholar 

  7. Guerriero G., Trocchia S., Abdel-Gawad F.K., Ciarcia G. 2014. Roles of reactive oxygen species in the spermatogenesis regulation. Front. Endocrinol. (Lausanne). 22, 5–56.

    Google Scholar 

  8. Mora-Esteves C., Shin D. 2013. Nutrient supplementation: Improving male fertility fourfold. Semin. Reprod. Med. 31, 293–300.

    Article  PubMed  Google Scholar 

  9. Ren X.M., Wang G.G., Xu D.Q., et al. 2012. The protection of selenium on cadmium-induced inhibition of spermatogenesis via activating testosterone synthesis in mice. Food Chem. Toxicol. 50, 3521–3529.

    Article  PubMed  CAS  Google Scholar 

  10. Varlamova E.G., Novoselov V.I. 2012. The search of partners of a new mammalian selenium-containing protein V (SelV) and expression of its mRNA during ontogenesis and spermatogenesis. Mol. Biol. (Moscow). 46, 250–257.

    Article  CAS  Google Scholar 

  11. Varlamova E.G., Novoselov V.I. 2012. Involvement of selen-containing proteins in mammalian spermatogenesis. Usp. Sovrem. Biol. 132, 370–380.

    CAS  Google Scholar 

  12. Varlamova E.G. 2016. The role of selenium and selenocysteine-containing proteins in the mammalian male reproductive system. Biophysics. 61, 580–584.

    Article  CAS  Google Scholar 

  13. Chan J.M., Darke A.K., Penney K.L., et al. 2016. Selenium-or vitamin E-related gene variants, interaction with supplementation, and risk of high-grade prostate cancer in SELECT. Cancer Epidemiol. Biomarkers Prev. 25, 1050–1058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hackshaw-McGeagh L.E., Perry R.E., Leach V.A., et al. 2015. A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality. Cancer Causes Control. 26, 1521–1550.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Arnold K.B., Hermos J.A., Anderson K.B., et al. 2014. Retention of black and white participants in the selenium and vitamin E cancer prevention trial (SWOGcoordinated intergroup study S0000). Cancer Epidemiol. Biomarkers Prev. 23, 2895–2905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Varlamova E.G., Goltyaev M.V., Fesenko E.E. 2016. Expression of human selenoprotein genes selh, selk, selm, sels, selv and gpx-6 in various tumor cell lines. Dokl. Biochem. Biophys. 468, 203–205.

    Article  PubMed  CAS  Google Scholar 

  17. Varlamova E.G., Cheremushkina I.V. 2017. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J. Trace Elem. Med. Biol. 39, 76–85.

    Article  PubMed  CAS  Google Scholar 

  18. Varlamova E.G., Goltyaev M.V., Novoselov V.I., Fesenko E.E. 2017. Cloning, intracellular localization, and expression of the mammalian selenocysteine-containing protein SELENOI (SelI) in tumor cell lines. Dokl. Biochem. Biophys. 476, 320–322.

    Article  PubMed  CAS  Google Scholar 

  19. Ramoutar R.R., Brumaghim J.L. 2010. Antioxidant and anticancer properties and mechanisms of inorganic selenium, oxo-sulfur, and oxo-selenium compounds. Cell Biochem. Biophys. 58, 1–23.

    Article  PubMed  CAS  Google Scholar 

  20. Wang Y., Wu Y., Luo K., et al. 2013. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem. Toxicol. 58, 61–67.

    Article  PubMed  CAS  Google Scholar 

  21. Li J.L., Jiang C.Y., Li S., Xu S.W. 2013. Cadmium induced hepato-toxicity in chickens (Gallus domesticus) and ameliorative effect by selenium. Ecotoxicol. Environ. Saf. 96, 103–109.

    Article  PubMed  CAS  Google Scholar 

  22. Kryukov G.V., Castellano S., Novoselov S.V., et al. 2003. Characterization of mammalian selenoproteomes. Science. 300, 1439–1443.

    Article  PubMed  CAS  Google Scholar 

  23. Dikiy A., Novoselov S.V., Fomenko D.E., et al. 2007. SelT, SelW, SelH, and Rdx12: Genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry. 46, 6871–6882.

    Article  PubMed  CAS  Google Scholar 

  24. Varlamova E.G., Novoselov V.I. 2012. Co-localization of selenium-containing protein V (selV) and its partners in mammalian cells. Mol. Biol. (Moscow). 46, 735–738.

    Article  CAS  Google Scholar 

  25. Varlamova E.G. 2011. Intracellular localization of mammalian selenoproteins SELV (Selenoprotein V) and GPX6 (Glutathionperoxidase 6). Fundament. Issled. 9, 326–330.

    Google Scholar 

  26. Varlamova E.G., Novoselov S.V., Novoselov V.I., Fesenko E.E. 2011. New mammalian selenium-containing protein V: The search for protein partners. Dokl. Biochem. Biophys. 441, 399–401.

    Article  CAS  Google Scholar 

  27. Varlamova E.G., Novoselov S.V., Novoselov V.I. 2015. cDNA cloning and the expression and determination of substrate specificity of mice selenocysteine-containing protein SELV (Selenoprotein V). Mol. Biol. (Moscow). 49, 700–704.

    Article  CAS  Google Scholar 

  28. Goltyaev M.V., Varlamova E.G., Novoselov V.I., Fesenko E.E. 2014. Determination of mgpx6 and mselv gene mRNA expression during mouse postnatal development. Dokl. Biochem. Biophys. 457, 132–133.

    Article  PubMed  CAS  Google Scholar 

  29. Su D., Novoselov S.V., Sun Q.A., Moustafa M.E., et al. 2005. Mammalian selenoproteins thioredoxin-glutathione reductase: Roles in disulfide bond formation and sperm maturation. J. Biol. Chem. 280, 26491–26498.

    Article  PubMed  CAS  Google Scholar 

  30. Liu L., Yang B., Cheng Y., Lin H. 2015. Ameliorative effects of selenium on cadmium induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol. Trace Elem. Res. 167, 308–319.

    Article  PubMed  CAS  Google Scholar 

  31. Shchedrina V.A., Zhang Y., Labunskyy V.M., et al. 2010. Structure–function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid. Redox. Signal. 12, 839–849.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guan L., Han B., Li Z., et al. 2009. Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells. Apoptosis. 14, 218–225.

    Article  PubMed  CAS  Google Scholar 

  33. Han B., Ren Y., Guan L., et al. 2009. Sodium selenite induces apoptosis in acute promyelocytic leukemiaderived NB4 cells through mitochondria-dependent pathway. Oncol. Res. 17, 373–381.

    Article  PubMed  Google Scholar 

  34. Bull S.B., Ozcelik H., Pinnaduwage D. 2004. The combination of p53 mutation and neu/erbB-2 amplification is associated with poor survival in node-negative breast cancer. J. Clin. Oncol. 22, 86–96.

    Article  PubMed  CAS  Google Scholar 

  35. Emmink B.L., Laoukili J., Kipp A.P., et al. 2014. GPx2 suppression of H2O2 stress links the formation of differentiated tumor mass to metastatic capacity in colorectal cancer. Cancer Res. 74, 6717–6730.

    Article  PubMed  CAS  Google Scholar 

  36. Yang Z.L., Yang L., Zou Q. 2013. Positive ALDH1A3 and negative GPX3 expressions are biomarkers for poor prognosis of gallbladder cancer. Dis. Markers. 35, 163–172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kaiser M.F., Johnson D.C., Wu P. 2013. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood. 122, 219–226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Haddad M.E.I., Jean E., Turki A. 2012. Glutathione peroxidase 3, a new retinoid target gene, is crucial for human skeletal muscle precursor cell survival. J. Cell Sci. 125, 6147–6156.

    Article  PubMed  CAS  Google Scholar 

  39. Barrett C.W., Ning W., Chen X. 2013. Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. Cancer Res. 73, 1245–1255.

    Article  PubMed  CAS  Google Scholar 

  40. Lee O.J., Schneider-Stock R., McChesney P.A., et al. 2005. Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett’s tumorigenesis. Neoplasia. 7, 854–861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Guerriero E., Capone F., Accardo M., Sorice A., Costantini M., Colonna G., Castello G., Costantini S. 2015. GPX4 and GPX7 over-expression in human hepatocellular carcinoma tissues. Eur. J. Histochem. 59, 2535–2540.

    Article  CAS  Google Scholar 

  42. Meplan C., Dragsted L.O., Ravn-Haren G., et al. 2013. Association between polymorphisms in glutathione peroxidase and selenoprotein p genes, glutathione peroxidase activity, HRT use and breast cancer risk. PLoS One. 8, e73316.

    Article  CAS  Google Scholar 

  43. Cao M., Mu X., Jiang C., et al. 2014. Single-nucleotide polymorphisms of GPX1 and MnSOD and susceptibility to bladder cancer: A systematic review and metaanalysis. Tumour Biol. 35, 759–764.

    Article  PubMed  CAS  Google Scholar 

  44. Fu T.Y., Hou Y.Y., Chu S.T., et al. 2011. Manganese superoxide dismutase and glutathione peroxidase as prognostic markers in patients with buccal mucosal squamous cell carcinomas. Head Neck. 33, 1606–1615.

    Article  PubMed  Google Scholar 

  45. Hercbergs A.H., Ashur-Fabian O., Garfield D. 2010. Thyroid hormones and cancer: Clinical studies of hypothyroidism in oncology. Curr. Opin. Endocrinol. Diabetes Obes. 17, 432–436.

    Article  PubMed  CAS  Google Scholar 

  46. Aranda A., Martinez-Iglesias O., Ruiz-Llorente L., et al. 2009. Thyroid receptor: Roles in cancer. Trends Endocrinol. Metab. 20, 318–324.

    Article  PubMed  CAS  Google Scholar 

  47. Bessho K., Etani Y., Ichimori H., et al. 2010. Increased type 3 iodothyronine deiodinase activity in a regrown hepatic hemangioma with consumptive hypothyroidism. Eur. J. Pediatr. 169, 215–221.

    Article  PubMed  CAS  Google Scholar 

  48. Murawaki Y., Tsuchiya H., Kanbe T., et al. 2008. Aberrant expression of selenoproteins in the progression of colorectal cancer. Cancer Lett. 259, 218–230.

    Article  PubMed  CAS  Google Scholar 

  49. Irons R., Tsuji P.A., Carlson B.A., et al. 2010. Deficiency in the 15 kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells. Cancer Prev. Res. 3, 630–639.

    Article  CAS  Google Scholar 

  50. Tsuji P.A., Naranjo-Suarez S., Carlson B.A., et al. 2012. Deficiency in the 15 kDa selenoprotein inhibits colon cancer cell growth. Nutrients. 3, 805–817.

    Article  CAS  Google Scholar 

  51. Tsuji P.A., Carlson B.A., Yoo M.H., et al. 2015. The 15 kDa selenoprotein and thioredoxin reductase 1 promote colon cancer by different pathways. PLoS One. 10, e0124487.

    Article  CAS  Google Scholar 

  52. Shigemi Z., Manabe K., Hara N., et al. 2017. Methylseleninic acid and sodium selenite induce severe ER stress and subsequent apoptosis through UPR activation in PEL cells. Chem. Biol. Interact. 266, 28–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Varlamova.

Additional information

Original Russian Text © E.G. Varlamova, M.V. Goltyaev, J.P. Kuznetsova, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 3, pp. 519–526.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varlamova, E.G., Goltyaev, M.V. & Kuznetsova, J.P. Effect of Sodium Selenite on Gene Expression of SELF, SELW, and TGR Selenoproteins in Adenocarcinoma Cells of the Human Prostate. Mol Biol 52, 446–452 (2018). https://doi.org/10.1134/S0026893318030147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318030147

Keywords

Navigation