Molecular Biology

, Volume 52, Issue 3, pp 446–452 | Cite as

Effect of Sodium Selenite on Gene Expression of SELF, SELW, and TGR Selenoproteins in Adenocarcinoma Cells of the Human Prostate

  • E. G. Varlamova
  • M. V. Goltyaev
  • J. P. Kuznetsova
Molecular Cell Biology


Selenium is an essential trace element, the deficiency of which leads to the development of several serious diseases, including male infertility, prostate cancer, etc. It has been shown that oxidative stress contributes to the progression of prostate cancer, and antioxidants such as selenium and vitamin E can significantly reduce the risk of this disease. Sodium selenite, one of the selenium compounds that induce the formation of reactive oxygen species, is considered as a potential anticancer agent. The SS concentrations that lead to a decrease in the viability of human prostate adenocarcinoma cells (line Du-145) have been selected, and the effect of sodium selenite on the expression of mRNA of the SELV, SELW, and TGR selenocysteine proteins in these cells has been analyzed.


selenium mammalian selenocysteine-containing proteins prostate cancer sodium selenite 





glutathione peroxidase


isopropyl β-D-1-thiogalactopyranoside


open reading frame


reactive oxygen species






selenocysteine-containing proteins V and W


sodium selenite


thioredoxin glutathione reductase


endoplasmic reticulum


expression level of the studied gene relative to the expression of the reference gene


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pieczyńska J., Grajeta H. 2015. The role of selenium in human conception and pregnancy. J. Trace Elem. Med. Biol. 29, 31–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Kaur S., Bansal M.P. 2015. Protective role of dietarysupplemented selenium and vitamin E in heat-induced apoptosis and oxidative stress in mice testes. Andrologia. 47, 1109–1119.CrossRefPubMedGoogle Scholar
  3. 3.
    Song R., Yao X., Shi L., Ren Y., Zhao H. 2015. Effects of dietary selenium on apoptosis of germ cells in the testis during spermatogenesis in roosters. Theriogenology. 84, 583–588.CrossRefPubMedGoogle Scholar
  4. 4.
    Ansar S., Abudawood M., Hamed S.S., Aleem M.M. 2017. Sodium selenite protects against silver nanoparticle-induced testicular toxicity and inflammation. Biol. Trace Elem. Res. 175, 161–168.CrossRefPubMedGoogle Scholar
  5. 5.
    Shi L., Zhao H., Ren Y., et al. 2014. Effects of different levels of dietary selenium on the proliferation of spermatogonial stem cells and antioxidant status in testis of roosters. Anim. Reprod. Sci. 149, 266–272.CrossRefPubMedGoogle Scholar
  6. 6.
    Ahsan U., Kamran Z., Raza I., et al. 2014. Role of selenium in male reproduction: A review. Anim. Reprod. Sci. 146, 55–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Guerriero G., Trocchia S., Abdel-Gawad F.K., Ciarcia G. 2014. Roles of reactive oxygen species in the spermatogenesis regulation. Front. Endocrinol. (Lausanne). 22, 5–56.Google Scholar
  8. 8.
    Mora-Esteves C., Shin D. 2013. Nutrient supplementation: Improving male fertility fourfold. Semin. Reprod. Med. 31, 293–300.CrossRefPubMedGoogle Scholar
  9. 9.
    Ren X.M., Wang G.G., Xu D.Q., et al. 2012. The protection of selenium on cadmium-induced inhibition of spermatogenesis via activating testosterone synthesis in mice. Food Chem. Toxicol. 50, 3521–3529.CrossRefPubMedGoogle Scholar
  10. 10.
    Varlamova E.G., Novoselov V.I. 2012. The search of partners of a new mammalian selenium-containing protein V (SelV) and expression of its mRNA during ontogenesis and spermatogenesis. Mol. Biol. (Moscow). 46, 250–257.CrossRefGoogle Scholar
  11. 11.
    Varlamova E.G., Novoselov V.I. 2012. Involvement of selen-containing proteins in mammalian spermatogenesis. Usp. Sovrem. Biol. 132, 370–380.Google Scholar
  12. 12.
    Varlamova E.G. 2016. The role of selenium and selenocysteine-containing proteins in the mammalian male reproductive system. Biophysics. 61, 580–584.CrossRefGoogle Scholar
  13. 13.
    Chan J.M., Darke A.K., Penney K.L., et al. 2016. Selenium-or vitamin E-related gene variants, interaction with supplementation, and risk of high-grade prostate cancer in SELECT. Cancer Epidemiol. Biomarkers Prev. 25, 1050–1058.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hackshaw-McGeagh L.E., Perry R.E., Leach V.A., et al. 2015. A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality. Cancer Causes Control. 26, 1521–1550.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Arnold K.B., Hermos J.A., Anderson K.B., et al. 2014. Retention of black and white participants in the selenium and vitamin E cancer prevention trial (SWOGcoordinated intergroup study S0000). Cancer Epidemiol. Biomarkers Prev. 23, 2895–2905.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Varlamova E.G., Goltyaev M.V., Fesenko E.E. 2016. Expression of human selenoprotein genes selh, selk, selm, sels, selv and gpx-6 in various tumor cell lines. Dokl. Biochem. Biophys. 468, 203–205.CrossRefPubMedGoogle Scholar
  17. 17.
    Varlamova E.G., Cheremushkina I.V. 2017. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J. Trace Elem. Med. Biol. 39, 76–85.CrossRefPubMedGoogle Scholar
  18. 18.
    Varlamova E.G., Goltyaev M.V., Novoselov V.I., Fesenko E.E. 2017. Cloning, intracellular localization, and expression of the mammalian selenocysteine-containing protein SELENOI (SelI) in tumor cell lines. Dokl. Biochem. Biophys. 476, 320–322.CrossRefPubMedGoogle Scholar
  19. 19.
    Ramoutar R.R., Brumaghim J.L. 2010. Antioxidant and anticancer properties and mechanisms of inorganic selenium, oxo-sulfur, and oxo-selenium compounds. Cell Biochem. Biophys. 58, 1–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Y., Wu Y., Luo K., et al. 2013. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem. Toxicol. 58, 61–67.CrossRefPubMedGoogle Scholar
  21. 21.
    Li J.L., Jiang C.Y., Li S., Xu S.W. 2013. Cadmium induced hepato-toxicity in chickens (Gallus domesticus) and ameliorative effect by selenium. Ecotoxicol. Environ. Saf. 96, 103–109.CrossRefPubMedGoogle Scholar
  22. 22.
    Kryukov G.V., Castellano S., Novoselov S.V., et al. 2003. Characterization of mammalian selenoproteomes. Science. 300, 1439–1443.CrossRefPubMedGoogle Scholar
  23. 23.
    Dikiy A., Novoselov S.V., Fomenko D.E., et al. 2007. SelT, SelW, SelH, and Rdx12: Genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry. 46, 6871–6882.CrossRefPubMedGoogle Scholar
  24. 24.
    Varlamova E.G., Novoselov V.I. 2012. Co-localization of selenium-containing protein V (selV) and its partners in mammalian cells. Mol. Biol. (Moscow). 46, 735–738.CrossRefGoogle Scholar
  25. 25.
    Varlamova E.G. 2011. Intracellular localization of mammalian selenoproteins SELV (Selenoprotein V) and GPX6 (Glutathionperoxidase 6). Fundament. Issled. 9, 326–330.Google Scholar
  26. 26.
    Varlamova E.G., Novoselov S.V., Novoselov V.I., Fesenko E.E. 2011. New mammalian selenium-containing protein V: The search for protein partners. Dokl. Biochem. Biophys. 441, 399–401.CrossRefGoogle Scholar
  27. 27.
    Varlamova E.G., Novoselov S.V., Novoselov V.I. 2015. cDNA cloning and the expression and determination of substrate specificity of mice selenocysteine-containing protein SELV (Selenoprotein V). Mol. Biol. (Moscow). 49, 700–704.CrossRefGoogle Scholar
  28. 28.
    Goltyaev M.V., Varlamova E.G., Novoselov V.I., Fesenko E.E. 2014. Determination of mgpx6 and mselv gene mRNA expression during mouse postnatal development. Dokl. Biochem. Biophys. 457, 132–133.CrossRefPubMedGoogle Scholar
  29. 29.
    Su D., Novoselov S.V., Sun Q.A., Moustafa M.E., et al. 2005. Mammalian selenoproteins thioredoxin-glutathione reductase: Roles in disulfide bond formation and sperm maturation. J. Biol. Chem. 280, 26491–26498.CrossRefPubMedGoogle Scholar
  30. 30.
    Liu L., Yang B., Cheng Y., Lin H. 2015. Ameliorative effects of selenium on cadmium induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol. Trace Elem. Res. 167, 308–319.CrossRefPubMedGoogle Scholar
  31. 31.
    Shchedrina V.A., Zhang Y., Labunskyy V.M., et al. 2010. Structure–function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid. Redox. Signal. 12, 839–849.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Guan L., Han B., Li Z., et al. 2009. Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells. Apoptosis. 14, 218–225.CrossRefPubMedGoogle Scholar
  33. 33.
    Han B., Ren Y., Guan L., et al. 2009. Sodium selenite induces apoptosis in acute promyelocytic leukemiaderived NB4 cells through mitochondria-dependent pathway. Oncol. Res. 17, 373–381.CrossRefPubMedGoogle Scholar
  34. 34.
    Bull S.B., Ozcelik H., Pinnaduwage D. 2004. The combination of p53 mutation and neu/erbB-2 amplification is associated with poor survival in node-negative breast cancer. J. Clin. Oncol. 22, 86–96.CrossRefPubMedGoogle Scholar
  35. 35.
    Emmink B.L., Laoukili J., Kipp A.P., et al. 2014. GPx2 suppression of H2O2 stress links the formation of differentiated tumor mass to metastatic capacity in colorectal cancer. Cancer Res. 74, 6717–6730.CrossRefPubMedGoogle Scholar
  36. 36.
    Yang Z.L., Yang L., Zou Q. 2013. Positive ALDH1A3 and negative GPX3 expressions are biomarkers for poor prognosis of gallbladder cancer. Dis. Markers. 35, 163–172.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kaiser M.F., Johnson D.C., Wu P. 2013. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood. 122, 219–226.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Haddad M.E.I., Jean E., Turki A. 2012. Glutathione peroxidase 3, a new retinoid target gene, is crucial for human skeletal muscle precursor cell survival. J. Cell Sci. 125, 6147–6156.CrossRefPubMedGoogle Scholar
  39. 39.
    Barrett C.W., Ning W., Chen X. 2013. Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. Cancer Res. 73, 1245–1255.CrossRefPubMedGoogle Scholar
  40. 40.
    Lee O.J., Schneider-Stock R., McChesney P.A., et al. 2005. Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett’s tumorigenesis. Neoplasia. 7, 854–861.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Guerriero E., Capone F., Accardo M., Sorice A., Costantini M., Colonna G., Castello G., Costantini S. 2015. GPX4 and GPX7 over-expression in human hepatocellular carcinoma tissues. Eur. J. Histochem. 59, 2535–2540.CrossRefGoogle Scholar
  42. 42.
    Meplan C., Dragsted L.O., Ravn-Haren G., et al. 2013. Association between polymorphisms in glutathione peroxidase and selenoprotein p genes, glutathione peroxidase activity, HRT use and breast cancer risk. PLoS One. 8, e73316.CrossRefGoogle Scholar
  43. 43.
    Cao M., Mu X., Jiang C., et al. 2014. Single-nucleotide polymorphisms of GPX1 and MnSOD and susceptibility to bladder cancer: A systematic review and metaanalysis. Tumour Biol. 35, 759–764.CrossRefPubMedGoogle Scholar
  44. 44.
    Fu T.Y., Hou Y.Y., Chu S.T., et al. 2011. Manganese superoxide dismutase and glutathione peroxidase as prognostic markers in patients with buccal mucosal squamous cell carcinomas. Head Neck. 33, 1606–1615.CrossRefPubMedGoogle Scholar
  45. 45.
    Hercbergs A.H., Ashur-Fabian O., Garfield D. 2010. Thyroid hormones and cancer: Clinical studies of hypothyroidism in oncology. Curr. Opin. Endocrinol. Diabetes Obes. 17, 432–436.CrossRefPubMedGoogle Scholar
  46. 46.
    Aranda A., Martinez-Iglesias O., Ruiz-Llorente L., et al. 2009. Thyroid receptor: Roles in cancer. Trends Endocrinol. Metab. 20, 318–324.CrossRefPubMedGoogle Scholar
  47. 47.
    Bessho K., Etani Y., Ichimori H., et al. 2010. Increased type 3 iodothyronine deiodinase activity in a regrown hepatic hemangioma with consumptive hypothyroidism. Eur. J. Pediatr. 169, 215–221.CrossRefPubMedGoogle Scholar
  48. 48.
    Murawaki Y., Tsuchiya H., Kanbe T., et al. 2008. Aberrant expression of selenoproteins in the progression of colorectal cancer. Cancer Lett. 259, 218–230.CrossRefPubMedGoogle Scholar
  49. 49.
    Irons R., Tsuji P.A., Carlson B.A., et al. 2010. Deficiency in the 15 kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells. Cancer Prev. Res. 3, 630–639.CrossRefGoogle Scholar
  50. 50.
    Tsuji P.A., Naranjo-Suarez S., Carlson B.A., et al. 2012. Deficiency in the 15 kDa selenoprotein inhibits colon cancer cell growth. Nutrients. 3, 805–817.CrossRefGoogle Scholar
  51. 51.
    Tsuji P.A., Carlson B.A., Yoo M.H., et al. 2015. The 15 kDa selenoprotein and thioredoxin reductase 1 promote colon cancer by different pathways. PLoS One. 10, e0124487.CrossRefGoogle Scholar
  52. 52.
    Shigemi Z., Manabe K., Hara N., et al. 2017. Methylseleninic acid and sodium selenite induce severe ER stress and subsequent apoptosis through UPR activation in PEL cells. Chem. Biol. Interact. 266, 28–37.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. G. Varlamova
    • 1
  • M. V. Goltyaev
    • 1
  • J. P. Kuznetsova
    • 2
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchinoRussia
  2. 2.Voronezh State University of Engineering TechnologiesVoronezhRussia

Personalised recommendations