Skip to main content
Log in

Adenosine A2A receptor as a drug target for treatment of sepsis

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Sepsis is a generalized infection accompanied by response of the body that manifests in a clinical and laboratory syndrome, namely, in the systemic inflammatory response syndrome (SIRS) from the organism to the infection. Although sepsis is a widespread and life-threatening disease, the assortment of drugs for its treatment is mostly limited by antibiotics. Therefore, the search for new cellular targets for drug therapy of sepsis is an urgent task of modern medicine and pharmacology. One of the most promising targets is the adenosine A2A receptor (A2AAR). The activation of this receptor, which is mediated by extracellular adenosine, manifests in almost all types of immune cells (lymphocytes, monocytes, macrophages, and dendritic cells) and results in reducing the severity of inflammation and reperfusion injury in various tissues. The activation of adenosine A2A receptor inhibits the proliferation of T cells and production of proinflammatory cytokines, which contributes to the activation of the synthesis of anti-inflammatory cytokines, thereby suppressing the systemic response. For this reason, various selective A2AAR agonists and antagonists may be considered to be drug candidates for sepsis pharmacotherapy. Nevertheless, they remain only efficient ligands and objects of pre-clinical and clinical trials. This review examines the molecular mechanisms of inflammatory response in sepsis and the structure and functions of A2AAR and its role in the pathogenesis of sepsis, as well as examples of using agonists and antagonists of this receptor for the treatment of SIRS and sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MOF:

multiple organ failure

5-LO:

5-lipoxigenase

A2AAR:

adenosine A2A receptor

AC:

adenylate cyclase

AP-1:

activator protein 1

AR:

adenosine receptor

CD:

cluster of differentiation (of lymphocytes)

CDC42:

cell division control protein 42 homolog

CEBPβ:

CCAAT-enhancer-binding protein

beta-COX-2:

cycloxygenase of type 2

CREB1:

cAMP responsive element binding protein 1

CTLA-4:

cytotoxic T-lymphocyte-associated antigen 4

CXCL:

chemokine (C-X-C motif) ligand 1

eNOS:

endothelial NO synthase

GCSF:

granulocyte colony-stimulating factor

GPCR:

G-protein-coupled receptor

ICAM-1:

intercellular adhesion molecule 1

IFN:

interferon

IL:

interleukin

iNOS:

inducible NO synthase

IP3:

inositol 3,4,5-triphosphate

MAPK:

mitogen-activated protein kinase

MCSF:

macrophage colony-stimulating factor

MOF:

multiple organ failure

NF-κB:

nuclear factor κB

NOS:

NO synthase

PAF:

platelet activating factor

PAI-1:

plasminogen activator inhibitor-1

PDZ-GEF1:

guanine nucleotide exchange factor containing PDZ-domain

PGE2:

prostaglandin E2

PI3K:

phosphoinositide 3-kinase

PIP2:

phosphatidylinositol 4,5-diphosphate

PKA:

protein kinase A

PKB (or Akt):

protein kinase B

PKC-zeta:

protein kinase С-zeta

SIRS:

systemic inflammatory response syndrome

SUMO-1:

small ubiquitin-related modifier 1

TF:

tissue factor III (thromboplastin)

TGF-β:

transforming growth factor beta

TLRs:

Toll-like receptors

TNF-α:

tumor necrosis factor α

TRAX:

translin-associated factor X

USP4:

ubiquitin specific protease 4

References

  1. Haskó G., Linden J., Cronstein B., Pacher P. 2008. Adenosine receptors: Therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 7, 759–770.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jacobson K.A., Gao Z.-G. 2006. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discov. 5, 247–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson C.M., Xiong W., Geiger J.D., Young J.D., Cass C.E., Baldwin S.A., Parkinson F.E. 1999. Distribution of equilibrative, nitrobenzylthioinosine-sensitive nucleoside transporters (ENT1) in brain. J. Neurochem. 73, 867–873.

    Article  CAS  PubMed  Google Scholar 

  4. Fredholm B.B., Arslan G., Halldner L., Kull B., Schulte G., Wasserman W. 2000. Structure and function of adenosine receptors and their genes. Naunyn-Schmiedeberg’s Arch. Pharmacol. 362, 364–374.

    Article  CAS  Google Scholar 

  5. Chen J.-F., Eltzschig H.K., Fredholm B.B. 2013. Adenosine receptors as drug targets: What are the challenges? Nat. Rev. Drug Discov. 12, 265–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morelli M., Carta A.R., Jenner P. 2009. Adenosine receptors in health and disease. Handb. Exp. Pharmacol. 193, 589–615.

    Article  CAS  PubMed  Google Scholar 

  7. Van der Poll T., Opal S.M. 2008. Host–pathogen interactions in sepsis. Lancet Infect. Dis. 8, 32–43.

    Article  PubMed  Google Scholar 

  8. Cohen J. 2002. The immunopathogenesis of sepsis. Nature. 420, 885–891.

    Article  CAS  PubMed  Google Scholar 

  9. Stearns-Kurosawa D.J., Osuchowski M.F., Valentine C., Kurosawa S., Remick D.G. 2011. The pathogenesis of sepsis. Annu. Rev. Pathol. 6, 19–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reinhart K., Bauer M., Riedemann N.C., Hartog C.S. 2012. New approaches to sepsis: Molecular diagnostics and biomarkers. Clin. Microbiol. Rev. 25, 609–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohta A., Sitkovsky M. 2001. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 414, 916–920.

    Article  CAS  PubMed  Google Scholar 

  12. Grinev M.V., Gromov M.I., Komrakov V.E. 2001. Khirurgicheskii sepsis (Surgical Sepsis). St. Petersburg.

    Google Scholar 

  13. Savel’ev V.S., Gel’fand B.R. 2010. Sepsis: klassifikatsiya, klinikodiagnosticheskaya kontseptsiya i lechenie (Sepsis: Claccification, Clinical Diagnostic Concept, and Treatment). Moscow: Med. Inform. Agentstvo.

    Google Scholar 

  14. Lobzin Yu.V., Kozhokaru D.I. 2012. Intensive treatment of severe influenza compliucations. Zh. Infektol. 4, 58–64.

    Google Scholar 

  15. Chuchalin A.G, Sologub T.V. (Eds.). 2014. Gripp u vzroslykh: metodicheskie rekomendatsii po diagnostike, lecheniyu, spetsificheskoi i nespetsificheskoi profilaktike Influenza in Adults: Methodologica Guidelines for Diagnosis, Treatment, and Specific and Nonspecific Prevention). St. Petersburg: NO-Print.

    Google Scholar 

  16. Kiselev O.I., Vasin A.V., Shevyreva M.P., Deeva E.G., Sivak K.V., Egorov V.V., Tsvetkov V.B., Egorov A.Yu., Romanovskaya-Romanko E.A., Stepanova L.A., Komissarov A.B., Tsybalova L.M., Ignatjev G.M. 2015. Ebola hemorrhagic fever: Properties of the pathogen and development of vaccines and chemotherapeutic agents. Mol. Biol. (Moscow). 49 (4), 480–493.

    Article  CAS  Google Scholar 

  17. Liew F.Y., Xu D., Brint E.K., O’Neill L.A. 2005. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458.

    Article  CAS  PubMed  Google Scholar 

  18. Salomao R., Brunialti M.K.C., Rapozo M.M., Baggio-Zappia G.L., Galanos C., Freudenberg M. 2012. Bacterial sensing, cell signaling, and modulation of the immune responsed during sepsis. Shock. 38, 227–242.

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-Bojorquez L.N., Lopez-Bojorquez L.N., Dehesa A.Z., Dehesa A.Z., Reyes-Teran G., Reyes-Teran G. 2004. Molecular mechanisms involved in the pathogenesis of septic shock. Arch. Med. Res. 35, 465–479.

    Article  CAS  PubMed  Google Scholar 

  20. Liu S.F., Malik A.B. 2006. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L622–L645.

    Article  CAS  PubMed  Google Scholar 

  21. Wen A.Y., Sakamoto K.M., Miller L.S. 2010. The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413–6419.

    Article  CAS  PubMed  Google Scholar 

  22. Sullivan G.W., Fang G., Linden J., Scheld W.M. 2004. A2A adenosine receptor activation improves survival in mouse models of endotoxemia and sepsis. J. Infect. Dis. 189, 1897–1904.

    Article  CAS  PubMed  Google Scholar 

  23. Sheth S., Brito R., Mukherjea D., Rybak L.P., Ramkumar V. 2014. Adenosine receptors: Expression, function and regulation. Int. J. Mol. Sci. 15, 2024–2052.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lebon G., Warne T., Edwards P.C., Bennett K., Langmead C.J., Leslie A.G.W., Tate C.G. 2011. Agonistbound adenosine A2A receptor structures reveal common features of GPCR activation. Nature. 474, 521–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Doré A.S., Robertson N., Errey J.C., Ng I., Hollenstein K., Tehan B., Hurrell E., Bennett K., Congreve M., Magnani F., Tate C.G., Weir M., Marshall F.H. 2011. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure. 19, 1283–1293.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu F., Wu H., Katritch V., Han G.W., Jacobson K.A., Gao Z.-G., Cherezov V., Stevens R.C. 2011. Structure of an agonist-bound human A2A adenosine receptor. Science. 332, 322–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Preti D., Baraldi P.G., Moorman A.R., Borea P.A., Varani K. 2015. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med. Res. Rev. 35, 790–848.

    Article  CAS  PubMed  Google Scholar 

  28. Muravleva L.E., Molotov-Luchanskii V.B., Klyuev D.A., Ponamareva O.A., Demidchik L.A., Kolesnikova E.A. 2012. On the role of adenosine in mechanisms of development and progression of lung diseases. Sovr. Probl. Nauki Obraz. 4, 25.

    Google Scholar 

  29. Awad A.S., Huang L., Ye H., Duong E.T.A., Bolton W.K., Linden J., Okusa M.D. 2006. Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 290, F828–F837.

    Article  CAS  PubMed  Google Scholar 

  30. Reutershan J., Cagnina R.E., Chang D., Linden J., Ley K. 2007. Therapeutic anti-inflammatory effects of myeloid cell adenosine receptor A2a stimulation in lipopolysaccharide-induced lung injury. J. Immunol. 179, 1254–1263.

    Article  CAS  PubMed  Google Scholar 

  31. Trevethick M.A., Mantell S.J., Stuart E.F., Barnard A., Wright K.N., Yeadon M. 2008. Treating lung inflammation with agonists of the adenosine A2A receptor: Promises, problems and potential solutions. Br. J. Pharmacol. 155, 463–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klinger M., Freissmuth M., Nanoff C. 2002. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell. Signal. 14, 99–108.

    Article  CAS  PubMed  Google Scholar 

  33. De Lera Ruiz M., Lim Y.-H., Zheng J. 2014. Adenosine A2A receptor as a drug discovery target. J. Med. Chem. 57, 3623–3650.

    Article  PubMed  Google Scholar 

  34. Schulte G., Fredholm B.B. 2003. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell. Signal. 15, 813–827.

    Article  CAS  PubMed  Google Scholar 

  35. Kasza A. 2013. Signal-dependent Elk-1 target genes involved in transcript processing and cell migration. Biochim. Biophys. Acta Gene Regul. Mech. 1829, 1026–1033.

    Article  CAS  Google Scholar 

  36. Delghandi M.P., Johannessen M., Moens U. 2005. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell. Signal. 17, 1343–1351.

    Article  CAS  PubMed  Google Scholar 

  37. Feoktistov I., Goldstein A.E., Biaggioni I. 2000. Cyclic AMP and protein kinase A stimulate Cdc42: Role of A(2) adenosine receptors in human mast cells. Mol. Pharmacol. 58, 903–910.

    CAS  PubMed  Google Scholar 

  38. Qiu R.G., Abo A., Steven Martin G. 2000. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation. Curr. Biol. 10, 697–707.

    Article  CAS  PubMed  Google Scholar 

  39. Yang E., Zha J., Jockel J., Boise L.H., Thompson C.B., Korsmeyer S.J. 1995. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 80, 285–291.

    Article  CAS  PubMed  Google Scholar 

  40. Hayakawa J., Mittal S., Wang Y., Korkmaz K.S., Adamson E., English C., e Ohmichi M., McClelland M., Mercola D. 2004. Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Mol. Cell. 16, 521–535.

    Article  CAS  PubMed  Google Scholar 

  41. Yu T., Li Y.J., Bian A.H., Zuo H.B., Zhu T.W., Ji S.X., Kong F., Yin de Q., Wang C.B., Wang Z.F., Wang H.Q., Yang Y., Yoo B.C., Cho J.Y. 2014. The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm. 2014, 950472. doi 10.1155/2014/ 950472

    PubMed  PubMed Central  Google Scholar 

  42. Costa C., Hirsch E. 2010. More than just kinases: The scaffolding function of PI3K. Curr. Top. Microbiol. Immunol. 346, 171–181.

    CAS  PubMed  Google Scholar 

  43. Katso R., Okkenhaug K., Ahmadi K., White S., Timms J., Waterfield M.D. 2001. Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615–675.

    Article  CAS  PubMed  Google Scholar 

  44. Burgering B.M., Coffer P.J. 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature. 376, 599–602.

    Article  CAS  PubMed  Google Scholar 

  45. McColl S.R., St-Onge M., Dussault A.-A., Laflamme C., Bouchard L., Boulanger J., Pouliot M. 2006. Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils. FASEB J. 20, 187–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Folkesson H.G., Kuzenko S.R., Lipson D.A., Matthay M.A., Simmons M.A. 2012. The adenosine 2A receptor agonist GW328267C improves lung function after acute lung injury in rats. AJP Lung Cell. Mol. Physiol. 303, L259–L271.

    CAS  Google Scholar 

  47. Moore C.C., Martin E.N., Lee G.H., Obrig T., Linden J., Scheld W.M. 2008. An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models. BMC Infect. Dis. 8, 141.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cavalcante I.C., Castro M.V., Barreto A.R.F., Sullivan G.W., Vale M., Almeida P.R.C., Linden J., Rieger J.M., Cunha F.Q., Guerrant R.L., Ribeiro R.A., Brito G.A. 2006. Effect of novel A2A adenosine receptor agonist ATL 313 on Clostridium difficile toxin A-induced murine ileal enteritis. Infect. Immun. 74, 2606–2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Savel’ev V.S., Gel’fand B.R. 2006. Sepsis v nachale XXI veka. Klassifikatsiya, kliniko-diagnosticheskaya kontseptsiya i lechenie. Patologo-anatomicheskaya diagnostika (Sepsis in the Early 21st Century: Classification, Clinical Diagnostic Concept and Treatment, and Pathoanatomical Diagnosis). Moscow: Litterra.

    Google Scholar 

  50. Swaminathan S., Rosner M.H., Okusa M.D. 2015. Emerging therapeutic targets of sepsis-associated acute kidney injury. Semin. Nephrol. 35, 38–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Savva A., Roger T. 2013. Targeting Toll-like receptors: Promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front. Immunol. 4, 387. doi 10.3389/fimmu.2013.00387

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rusinov V.L., Sapozhnikova I.M., Ulomskii E.N., Medvedeva N.R., Egorov V.V., Kiselev O.I. 2015. Nucleophilic substitution of nitro group in nitrotriazolotriazines as a model of potential interaction with cysteinecontaining proteins. Chem. Heterocycl. Compd. 51, 275–280.

    Article  CAS  Google Scholar 

  53. Liu Q., Li J., Khoury J., Colgan S.P., Ibla J.C. 2009. Adenosine signaling mediates SUMO-1 modification of IkappaBalpha during hypoxia and reoxygenation. J. Biol. Chem. 284 (20), 13686–13695. doi 10.1074/jbc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Sivak.

Additional information

Original Russian Text © K.V. Sivak, A.V. Vasin, V.V. Egorov, V.B. Tsevtkov, N.N. Kuzmich, V.A. Savina, O.I. Kiselev, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 2, pp. 231–245.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivak, K.V., Vasin, A.V., Egorov, V.V. et al. Adenosine A2A receptor as a drug target for treatment of sepsis. Mol Biol 50, 200–212 (2016). https://doi.org/10.1134/S0026893316020230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316020230

Keywords

Navigation