Skip to main content
Log in

Codases: 50 years after

  • To the Anniversary of the Institute of Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

In memoriam to L. L. Kisselev

Abstract

Aminoacyl-tRNA synthetases (codases) catalyze aminoacylation of a particular tRNA with the corresponding amino acid at the first step of protein biosynthesis. The review considers the universal structural and functional characteristics of this largest family of enzymes, partitioned into two classes. The modes of tRNA binding and recognition, as well as additional editing activity, which are responsible for the extremely high fidelity of aminoacyl-tRNA synthesis, are discussed. The available data suggest an unusual evolutionary history for the most important components of the mechanism that ensures the proper synthesis of proteins and the association of this mechanism with amino acid biosynthesis. In addition, the review considers the secondary functions of synthetases in various cell metabolic processes, including pathophysiological ones. Their investigation may help to develop new diagnostic techniques and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crick F.H.C. 1957. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163.

    Google Scholar 

  2. Hoagland M.B., Keller E.B., Zamecnik P.C. 1956. Enzymatic carboxyl activation of amino acids. J. Biol. Chem. 218, 345–358.

    PubMed  CAS  Google Scholar 

  3. Hoagland M.B., Stephenson M.L., Scott J.F., Hecht L.I., Zamecnik P.C. 1958. A soluble ribonucleic acid intermediate in protein synthesis. J. Biol. Chem. 231, 241–257.

    PubMed  CAS  Google Scholar 

  4. Kisselev L.L., Favorova O.O. 1974. Aminoacyl-tRNA synthetases: Some recent results and achievements. Adv. Enzymol. Relat. Areas Mol. Biol. 40, 141–238.

    Article  PubMed  CAS  Google Scholar 

  5. Mirande M. 1991. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: Structural domains and their implications. Prog. Nucleic Acid Res. Mol. Biol. 40, 95–142.

    Article  PubMed  CAS  Google Scholar 

  6. Schimmel P. 1987. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56, 125–158.

    Article  PubMed  CAS  Google Scholar 

  7. Cusack S., Berthet-Colominas C., Hartlein M., Nassar N., Leberman R. 1990. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature. 347, 249–255.

    Article  PubMed  CAS  Google Scholar 

  8. Ruff M., Krishnaswamy S., Boeglin M., Poterszman A., Mitschler A., Podjarny A., Rees B., Thierry J.C., Moras D. 1991. Class II aminoacyl transfer RNA synthetases: Crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science. 252, 1682–1689.

    Article  PubMed  CAS  Google Scholar 

  9. Rould M.A., Perona J.J., Söll D., Steitz T.A. 1989. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 Å resolution. Science. 246, 1135–1142.

    Article  PubMed  CAS  Google Scholar 

  10. Brick P., Bhat T.N., Blow D.M. 1989. Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution: Interaction of the enzyme with the tyrosyl adenylate intermediate. J. Mol. Biol. 208, 83–98.

    Article  PubMed  CAS  Google Scholar 

  11. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 347, 203–206.

    Article  PubMed  CAS  Google Scholar 

  12. Carter C.W., Duax W.L. 2002. Did tRNA synthetase classes arise on opposite strands of the same gene? Mol. Cell. 10, 705–708.

    Article  PubMed  CAS  Google Scholar 

  13. Cusack S. 1993. Sequence, structure and evolutionary relationships between class 2 aminoacyl-tRNA synthetases: an update. Biochimie. 75, 1077–1081.

    Article  PubMed  CAS  Google Scholar 

  14. Arnez J.G., Moras D. 1997. Structural and functional considerations of the aminoacylation reaction. Trends Biochem. Sci. 22, 211–216.

    Article  PubMed  CAS  Google Scholar 

  15. Fraser T.H., Rich A. 1975. Amino acids are not all initially attached to the same position on transfer RNA molecules. Proc. Natl. Acad. Sci. USA. 72, 3044–3048.

    Article  PubMed  CAS  Google Scholar 

  16. Sprinzl M., Cramer F. 1975. Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2′- or 3′-hydroxyl group of the terminal adenosine. Proc. Natl. Acad. Sci. USA. 72, 3049–3053.

    Article  PubMed  CAS  Google Scholar 

  17. Ambrogelly A., Korencic D., Ibba M. 2002. Functional annotation of class I lysyl-tRNA synthetase phylogeny indicates a limited role for gene transfer. J. Bacteriol. 184, 4594–4600.

    Article  PubMed  CAS  Google Scholar 

  18. Terada T., Nureki O., Ishitani R., Ambrogelly A., Ibba M., Söll D., Yokoyama S. 2002. Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Nature Struct. Biol. 9, 257–262.

    Article  PubMed  CAS  Google Scholar 

  19. Perona J.J. 2005. Glutaminyl-tRNA Synthetases. In: The Aminoacyl-tRNA Synthetases. Eds. Ibba M., Francklyn C., Cusack S. Georgetown, TX: Landes Bioscience, pp. 72–88.

    Google Scholar 

  20. Cusack S. 1995. Eleven down and nine to go. Nature Struct. Biol. 2, 824–831.

    Article  PubMed  CAS  Google Scholar 

  21. Mosyak L., Safro M. 1993. Phenylalanyl-tRNA synthetase from Thermus thermophilus has four antiparallel folds of which only two are catalytically functional. Biochimie. 75, 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  22. Mosyak L., Reshetnikova L., Goldgur Y., Delarue M., Safro M.G. 1995. Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nature Struct. Biol. 2, 537–547.

    Article  PubMed  CAS  Google Scholar 

  23. Klipcan L., Levin I., Kessler N., Moor N., Finarov I., Safro M. 2008. The tRNA-induced conformational activation of human mitochondrial phenylalanyl-tRNA synthetase. Structure. 16, 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  24. Cusack S., Yaremchuk A., Tukalo M. 1996. The crystal structure of the ternary complex of T. thermophilus seryl-tRNA synthetase with tRNASer and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 15, 2834–2842.

    PubMed  CAS  Google Scholar 

  25. Cavarelli J., Eriani G., Rees B., Ruff M., Boeglin M., Mitschler A., Martin F., Gangloff J., Thierry J.C., Moras D. 1994. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 13, 327–337.

    PubMed  CAS  Google Scholar 

  26. Moor N., Kotik-Kogan O., Tworowski D., Sukhanova M., Safro M. 2006. The crystal structure of the ternary complex of phenylalanyl-tRNA synthetase with tRNAPhe and a phenylalanyl-adenylate analogue reveals a conformational switch of the CCA end. Biochemistry. 45, 10572–10583.

    Article  PubMed  CAS  Google Scholar 

  27. Cusack S., Yaremchuk A., Tukalo M. 1996. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNALys and a T. thermophilus tRNALys transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J. 15, 6321–6334.

    PubMed  CAS  Google Scholar 

  28. Desogus G., Todone F., Brick P., Onesti S. 2000. Active site of lysyl-tRNA synthetase: Structural studies of the adenylation reaction. Biochemistry. 39, 8418–8425.

    Article  PubMed  CAS  Google Scholar 

  29. Yaremchuk A., Tukalo M., Grøtli M., Cusack S. 2001. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: Comparison with histidyl-tRNA synthetase. J. Mol. Biol. 309, 989–1002.

    Article  PubMed  CAS  Google Scholar 

  30. Vasil’eva I.A., Moor N.A. 2007. Interaction of aminoacyl-tRNA synthetases with tRNA: General principles and distinguishing characteristics of the high-molecular-weight substrate recognition Biokhimiya. 72, 306–324.

    Google Scholar 

  31. Kisselev L.L. 1985. The role of the anticodon in recognition of tRNA by aminoacyl-tRNA synthetases. Prog. Nucleic Acid Res. Mol. Biol. 32, 237–266

    Article  PubMed  CAS  Google Scholar 

  32. Goldgur Y., Mosyak L., Reshetnikova L., Ankilova V., Lavrik O., Khodyreva S., Safro M. 1997. The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe. Structure. 5, 59–68.

    Article  PubMed  CAS  Google Scholar 

  33. Fukunaga R., Yokoyama S. 2007. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea. Nature Struct. Mol. Biol. 14, 272–279.

    Article  CAS  Google Scholar 

  34. Fukai S., Nureki O., Sekine S., Shimada A., Tao J., Vassylyev D.G., Yokoyama S. 2000. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNAVal and valyl-tRNA synthetase. Cell. 103, 793–803.

    Article  PubMed  CAS  Google Scholar 

  35. Cusack S. 1997. Aminoacyl-tRNA synthetases. Curr. Opin. Struct. Biol. 7, 881–889.

    Article  PubMed  CAS  Google Scholar 

  36. Shen N., Guo L., Yang B., Jin Y., Ding J. 2006. Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Nucleic Acids Res. 34, 3246–3258.

    Article  PubMed  CAS  Google Scholar 

  37. Yaremchuk A., Kriklivyi I., Tukalo M., Cusack S. 2002. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J. 21, 3829–3840.

    Article  PubMed  CAS  Google Scholar 

  38. Sprinzl M., Cramer F. 1979. The -C-C-A end of tRNA and its role in protein biosynthesis. Prog. Nucleic Acid Res. Mol. Biol. 22, 1–69.

    Article  PubMed  CAS  Google Scholar 

  39. Torres-Larios A., Sankaranarayanan R., Rees B., Dock-Bregeon A.-C., Moras D. 2003. Conformational movements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNA synthetase. J. Mol. Biol. 331, 201–211.

    Article  PubMed  CAS  Google Scholar 

  40. Sauter C., Lorber B., Cavarelli J., Moras D., Giege R. 2000. The free yeast aspartyl-tRNA synthetase differs from the tRNAAsp-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. J. Mol. Biol. 299, 1313–1324.

    Article  PubMed  CAS  Google Scholar 

  41. Vasil’eva I.A., Ankilova V.A., Lavrik O.I., Moor N.A. 2002. tRNA discrimination by T. thermophilus phenylalanyl-tRNA synthetase at the binding step. J. Mol. Recognit. 15, 188–196.

    Article  PubMed  CAS  Google Scholar 

  42. Delagoutte B., Moras D., Cavarelli J. 2000. tRNA aminoacylation by arginyl-tRNA synthetase: Induced conformations during substrates binding. EMBO J. 19, 5599–5610.

    Article  PubMed  CAS  Google Scholar 

  43. Rath V.L., Silvian L.F., Beijer B., Sproat B.S., Steitz T.A. 1998. How glutaminyl-tRNA synthetase selects glutamine. Structure. 6, 439–449.

    Article  PubMed  CAS  Google Scholar 

  44. Sekine S., Nureki O., Dubois D.Y., Bernier S., Chênevert R., Lapointe J., Vassylyev D.G., Yokoyama S. 2003. ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J. 22, 676–688.

    Article  PubMed  CAS  Google Scholar 

  45. Jakubowski H., Goldman E. 1992. Editing of errors in selection of amino acids for protein synthesis. Microbiol. Rev. 56, 412–429.

    PubMed  CAS  Google Scholar 

  46. Fersht A.R. 1977. Editing mechanisms in protein synthesis: Rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry. 16, 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  47. Nureki O., Vassylyev D.G., Tateno M., Shimada A., Nakama T., Fukai S., Konno M., Hendrickson T.L., Schimmel P., Yokoyama S. 1998. Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science. 280, 578–582.

    Article  PubMed  CAS  Google Scholar 

  48. Beuning P.J., Musier-Forsyth K. 2000. Hydrolytic editing by a class II aminoacyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA. 97, 8916–8920.

    Article  PubMed  CAS  Google Scholar 

  49. Dock-Bregeon A.C., Rees B., Torres-Larios A., Bey G., Caillet J., Moras D. 2004. Achieving error-free translation: The mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution. Mol. Cell. 16, 375–386.

    Article  PubMed  CAS  Google Scholar 

  50. Dwivedi S., Kruparani S.P., Sankaranarayanan R. 2005. A D-amino acid editing module coupled to the translational apparatus in archaea. Nature Struct. Mol. Biol. 12, 556–557.

    Article  CAS  Google Scholar 

  51. Fukunaga R., Yokoyama S. 2005. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. J. Mol. Biol. 346, 57–71.

    Article  PubMed  CAS  Google Scholar 

  52. Kotik-Kogan O., Moor N., Tworowski D., Safro M. 2005. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase. Structure. 13, 1799–1807.

    Article  PubMed  CAS  Google Scholar 

  53. Lincecum T.L.Jr., Tukalo M., Yaremchuk A., et al. 2003. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol. Cell. 11, 951–963.

    Article  PubMed  CAS  Google Scholar 

  54. Nakama T., Nureki O., Yokoyama S. 2001. Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J. Biol. Chem. 276, 47387–47393.

    Article  PubMed  CAS  Google Scholar 

  55. Roy H., Ling J., Irnov M., Ibba M. 2004. Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase. EMBO J. 23, 4639–4648.

    Article  PubMed  CAS  Google Scholar 

  56. Sokabe M., Okada A., Yao M., Nakashima T., Tanaka I. 2005. Molecular basis of alanine discrimination in editing site. Proc. Natl. Acad. Sci. USA. 102, 11669–11674.

    Article  PubMed  CAS  Google Scholar 

  57. SternJohn J., Hati S., Siliciano P.G., Musier-Forsyth K. 2007. Restoring species-specific posttransfer editing activity to a synthetase with a defunct editing domain. Proc. Natl. Acad. Sci. USA. 104, 2127–2132.

    Article  PubMed  CAS  Google Scholar 

  58. Kim H.Y., Ghosh G., Schulman L.H., Brunie S., Jakubowski H. 1993. The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA. 90, 11553–11557.

    Article  PubMed  CAS  Google Scholar 

  59. Jakubowski H. 2005. Accuracy of aminoacyl-tRNA synthetases: Proofreading of amino acids. In: The Aminoacyl-tRNA Synthetases. Eds. Ibba M., Francklyn C., Cusack S. Georgetown, TX: Landes Bioscience, pp. 384–396.

    Google Scholar 

  60. Tsui W.C., Fersht A.R. 1981. Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. Nucleic Acids Res. 9, 4627–4637.

    Article  PubMed  CAS  Google Scholar 

  61. Silvian L.F., Wang J., Steitz T.A. 1999. Insights into editing from an Ile-tRNA synthetase structure with tRNAIle and mupirocin. Science. 285, 1074–1077.

    Article  PubMed  CAS  Google Scholar 

  62. Beebe K., Ribas de Pouplana L., Schimmel P. 2003. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J. 22, 668–675.

    Article  PubMed  CAS  Google Scholar 

  63. Wong F.C., Beuning P.J., Silvers C., Musier-Forsyth K. 2003. An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing. J. Biol. Chem. 278, 52857–52864.

    Article  PubMed  CAS  Google Scholar 

  64. Sankaranarayanan R., Dock-Bregeon A.C., Rees B., Bovee M., Caillet J., Romby P., Francklyn C.S., Moras D. 2000. Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nature Struct. Biol. 7, 461–465.

    Article  PubMed  CAS  Google Scholar 

  65. Dock-Bregeon A., Sankaranarayanan R., Romby P., Caillet J., Springer M., Rees B., Francklyn C.S., Ehresmann C., Moras D. 2000. Transfer RNA-mediated editing in threonyl-tRNA synthetase: The class II solution to the double discrimination problem. Cell. 103, 877–884.

    Article  PubMed  CAS  Google Scholar 

  66. Beebe K., Merriman E., Ribas de Pouplana L., Schimmel P. 2004. A domain for editing by an archaebacterial tRNA synthetase. Proc. Natl. Acad. Sci. USA. 101, 5958–5963.

    Article  PubMed  CAS  Google Scholar 

  67. Lin S.X., Baltzinger M., Remy P. 1983. Fast kinetic study of yeast phenylalanyl-tRNA synthetase: An efficient discrimination between tyrosine and phenylalanine at the level of the aminoacyladenylate-enzyme complex. Biochemistry. 22, 681–689.

    Article  PubMed  CAS  Google Scholar 

  68. Lin S.X., Baltzinger M., Remy P. 1984. Fast kinetic study of yeast phenylalanyl-tRNA synthetase: Role of tRNAPhe in the discrimination between tyrosine and phenylalanine. Biochemistry. 23, 4109–4116.

    Article  PubMed  CAS  Google Scholar 

  69. Ling J., Roy H., Ibba M. 2007. Mechanism of tRNA-dependent editing in translational quality control. Proc. Natl. Acad. Sci. USA. 104, 72–77.

    Article  PubMed  CAS  Google Scholar 

  70. Fishman R., Ankilova V., Moor N., Safro M. 2001. Structure at 2.6 Å resolution of phenylalanyl-tRNA synthetase complexed with phenylalanyl-adenylate in the presence of manganese. Acta crystallogr. D57, 1534–1544.

    CAS  Google Scholar 

  71. Lee J.W., Beebe K., Nangle L.A., Jang J., Longo-Guess C.M., Cook S.A., Davisson M.T., Sundberg J.P., Schimmel P., Ackerman S.L. 2006. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 443, 50–55.

    Article  PubMed  CAS  Google Scholar 

  72. Ueland P.M., Refsum H., Beresford S.A., Vollset S.E. 2000. The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 72, 324–332.

    PubMed  CAS  Google Scholar 

  73. Seshadri S., Beiser A., Selhub J., Jacques P.F., Rosenberg I.H., D’Agostino R.B., Wilson P.W.F., Wolf P.A. 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 346, 476–483.

    Article  PubMed  CAS  Google Scholar 

  74. Woese C.R., Olsen G.J., Ibba M., Soll D. 2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64, 202–236.

    Article  PubMed  CAS  Google Scholar 

  75. Ibba M., Söll D. 2000. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650.

    Article  PubMed  CAS  Google Scholar 

  76. Wolf Y.I., Aravind L., Grishin N.V., Koonin E.V. 1999. Evolution of aminoacyl-tRNA synthetases: Analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 9, 689–710.

    PubMed  CAS  Google Scholar 

  77. Jasin M., Regan L., Schimmel P. 1983. Modular arrangement of functional domains along the sequence of an aminoacyl-tRNA synthetase. Nature. 306, 441–447.

    Article  PubMed  CAS  Google Scholar 

  78. Ribas de Pouplana L., Schimmel P. 2001. Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell. 104, 191–193.

    Article  PubMed  CAS  Google Scholar 

  79. Rodin S.N., Ohno S. 1997. Four primordial modes of tRNA-synthetase recognition, determined by the (G, C) operational code. Proc. Natl. Acad. Sci. USA. 94, 5183–5188.

    Article  PubMed  CAS  Google Scholar 

  80. Rodin S.N., Rodin A.S. 2008. On the origin of the genetic code: Signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity. 100, 341–355.

    Article  PubMed  CAS  Google Scholar 

  81. Nagel G.M., Doolittle R.F. 1991. Evolution and relatedness in two aminoacyl-tRNA synthetase families. Proc. Natl. Acad. Sci. USA. 88, 8121–8125.

    Article  PubMed  CAS  Google Scholar 

  82. Carter C.W., Jr. 1993. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62, 715–748.

    Article  PubMed  CAS  Google Scholar 

  83. Hartman H. 1995. Speculations on the origin of the genetic code. J. Mol. Evol. 40, 541–544.

    Article  PubMed  CAS  Google Scholar 

  84. Ferreira R., Cavalcanti A.R. 1997. Vestiges of early molecular processes leading to the genetic code. Orig. Life Evol. Biosph. 27, 397–403.

    Article  PubMed  CAS  Google Scholar 

  85. Trifonov E., Berezovsky I. 2002. Molecular evolution from abiotic scratch. FEBS Lett. 527, 1–4.

    Article  PubMed  CAS  Google Scholar 

  86. Wetzel R. 1995. Evolution of the aminoacyl-tRNA synthetases and the origin of the genetic code. J. Mol. Evol. 40, 545–550.

    Article  PubMed  CAS  Google Scholar 

  87. Hochuli M., Patzelt H., Oesterhelt D., Wuthrich K., Szyperski T. 1999. Amino acid biosynthesis in the halophilic archaeon Haloarcula hispanica. J. Bacteriol. 181, 3226–3237.

    PubMed  CAS  Google Scholar 

  88. Klipcan L., Safro M. 2004. Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases. J. Theor. Biol. 228, 389–396.

    Article  PubMed  CAS  Google Scholar 

  89. Wong J.T. 2005. Coevolution theory of the genetic code at age thirty. Bioessays. 27, 416–425.

    Article  PubMed  CAS  Google Scholar 

  90. Davis B.K. 1999. Evolution of the genetic code. Prog. Biophys. Mol. Biol. 72, 157–243.

    Article  PubMed  CAS  Google Scholar 

  91. Francklyn C., Perona J.J., Puetz J., Hou Y.M. 2002. Aminoacyl-tRNA synthetases: Versatile players in the changing theater of translation. RNA. 8, 1363–1372.

    Article  PubMed  CAS  Google Scholar 

  92. Artymiuk P.J., Rice D.W., Poirrette A.R., Willet P. 1994. A tale of two synthetases. Nature Struct. Biol. 1, 758–760.

    Article  PubMed  CAS  Google Scholar 

  93. Safro M., Mosyak L. 1995. Structural similarities in the noncatalytic domains of phenylalanyl-tRNA and biotin synthetases. Protein Science. 4, 2429–2432.

    Article  PubMed  CAS  Google Scholar 

  94. Nakatsu T., Kato H., Oda J. 1998. Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase. Nature Struct. Biol. 5, 15–19.

    Article  PubMed  CAS  Google Scholar 

  95. Roy H., Becker H., Reinbolt J., Kern D. 2003. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism. Proc. Natl. Acad. Sci. USA. 100, 9837–9842.

    Article  PubMed  CAS  Google Scholar 

  96. Sissler M., Delorme C., Bond J., Ehrlich S.D., Renault P., Francklyn C. 1999. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc. Natl. Acad. Sci. USA. 96, 8985–8990.

    Article  PubMed  CAS  Google Scholar 

  97. Kron M., Härtlein M. 2005. Aminoacyl-tRNA synthetases and desease. In: The Aminoacyl-tRNA Synthetases. Eds. Ibba M., Francklyn C., Cusack S. Georgetown, TX: Landes Bioscience, pp. 328–352.

    Google Scholar 

  98. Ivanov K.A., Moor N.A., Lavrik O.I. 2000. Non-canonical functions of aminoacyl-tRNA synthetases. Biokhimiya. 65, 1047–1057.

    Google Scholar 

  99. Belrhali H., Yaremchuk A., Tukalo M., Berthet C.C., Rasmussen B., Bosecke P., Diat O., Cusack S. 1995. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase. Structure. 3, 341–352.

    Article  PubMed  CAS  Google Scholar 

  100. Fontes R., Günther Sillero M.A., Sillero A. 1999. Acyl-CoA synthetase catalyzes the synthesis of diadenosine hexaphosphate (Ap6A). Biochimie. 81, 229–233.

    Article  PubMed  CAS  Google Scholar 

  101. Kisselev L.L., Justesen J., Wolfson A.D., Frolova L.Y. 1998. Diadenosine oligophosphates (Ap(n)A), a novel class of signalling molecules? FEBS Lett. 427, 157–163.

    Article  PubMed  CAS  Google Scholar 

  102. Vartanian A., Prudovsky I., Suzuki H., Dal Pra I., Kisselev L. 1997. Opposite effects of cell differentiation and apoptosis on Ap3A/Ap4A ratio in human cell cultures. FEBS Lett. 415, 160–162.

    Article  PubMed  CAS  Google Scholar 

  103. Vartanian A., Alexandrov I., Prudowski I., McLennan A., Kisselev L. 1999. Ap4A induces apoptosis in human cultured cells. FEBS Lett. 456, 175–180.

    Article  PubMed  CAS  Google Scholar 

  104. Ivakhno S.S., Kornelyuk A.I. 2004. Cytokine-like activities of some aminoacyl-tRNA synthetases and auxiliary p43 cofactor of aminoacylation reaction and their role in oncogenesis. Exp. Oncol. 26, 250–255.

    PubMed  CAS  Google Scholar 

  105. Yang X.L., Schimmel P., Ewalt K.L. 2004. Relationship of two human tRNA synthetases used in cell signaling. Trends Biochem. Sci. 29, 250–256.

    Article  PubMed  CAS  Google Scholar 

  106. Park S.G., Ewalt K.L., Kim S. 2005. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: New perspectives on housekeepers. Trends Biochem. Sci. 30, 569–574.

    Article  PubMed  CAS  Google Scholar 

  107. Yang X.L., Kapoor M., Otero F.J., Slike B.M., Tsuruta H., Frausto R., Bates A., Ewalt K.L., Cheresh D. A., Schimmel P. 2007. Gain-of-function mutational activation of human tRNA synthetase procytokine. Chem. Biol. 14, 1323–1333.

    Article  PubMed  CAS  Google Scholar 

  108. Tzima E., Schimmel P. 2006. Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem. Sci. 31, 7–10.

    Article  PubMed  CAS  Google Scholar 

  109. Jia J., Arif A., Ray P.S., Fox P.L. 2008. WHEP domains direct noncanonical function of glutamyl-prolyl tRNA synthetase in translational control of gene expression. Mol. Cell. 29, 679–690.

    Article  PubMed  CAS  Google Scholar 

  110. Hsu J.L., Rho S.B., Vannella K.M., Martinis S.A. 2006. Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles. J. Biol. Chem. 281, 23075–23082.

    Article  PubMed  CAS  Google Scholar 

  111. Paukstelis P.J., Lambowitz A.M. 2008. Identification and evolution of fungal mitochondrial tyrosyl-tRNA synthetases with group I intron splicing activity. Proc. Natl. Acad. Sci. USA. 105, 6010–6015.

    Article  PubMed  Google Scholar 

  112. Kaminska M., Shalak V., Francin M., Mirande M. 2007. Viral hijacking of mitochondrial lysyl-tRNA synthetase. J. Virol. 81, 68–73.

    Article  PubMed  CAS  Google Scholar 

  113. Kovaleski B.J., Kennedy R., Khorchid A., Kleiman L., Matsuo H., Musier-Forsyth K. 2007. Critical role of helix 4 of HIV-1 capsid C-terminal domain in interactions with human lysyl-tRNA synthetase. J. Biol. Chem. 282, 32274–32279.

    Article  PubMed  CAS  Google Scholar 

  114. Yannay-Cohen N., Razin E. 2006. Translation and transcription: The dual functionality of LysRS in mast cells. Mol. Cells. 22, 127–132.

    PubMed  CAS  Google Scholar 

  115. Chou T.F., Wagner C.R. 2007. Lysyl-tRNA synthetasegenerated lysyl-adenylate is a substrate for histidine triad nucleotide binding proteins. J. Biol. Chem. 282, 4719–4727.

    Article  PubMed  CAS  Google Scholar 

  116. Strub B.R., Eswara M.B., Pierce J.B., Mangroo D. 2007. Utp8p is a nucleolar tRNA-binding protein that forms a complex with components of the nuclear tRNA export machinery in Saccharomyces cerevisiae. Mol. Biol. Cell. 18, 3845–3859.

    Article  PubMed  CAS  Google Scholar 

  117. Ryckelynck M., Masquida B., Giegé R., Frugier M. 2005. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA. J. Mol. Biol. 354, 614–629.

    Article  PubMed  CAS  Google Scholar 

  118. Frugier M., Ryckelynck M., Giegé R. 2005. tRNA-balanced expression of a eukaryal aminoacyl-tRNA synthetase by an mRNA-mediated pathway. EMBO Rep. 6, 860–865.

    Article  PubMed  CAS  Google Scholar 

  119. Shin S.H., Kim H.S., Jung S.H., Xu H.D., Jeong Y.B., Chung Y.J. 2008. Implication of leucyl-tRNA synthetase 1 (LARS1) over-expression in growth and migration of lung cancer cells detected by siRNA targeted knock-down analysis. Exp. Mol. Med. 40, 229–236.

    Article  PubMed  CAS  Google Scholar 

  120. Adam A.C., Grohé C., Stier S., Gattenlöhner S., Balta Z., Büttner R., Gütgemann I. 2007. Hodgkin’s lymphoma in a patient with Jo-1 syndrome. Virchows Arch. 451, 101–104.

    Article  PubMed  Google Scholar 

  121. Asanuma Y., Koichihara R., Koyama S., Kawabata Y., Kobayashi S., Mimori T., Moriguchi M. 2006. Antisynthetase syndrome associated with sarcoidosis. Intern. Med. 45, 1065–1068.

    Article  PubMed  Google Scholar 

  122. Akaogi J., Barker T., Kuroda Y., Nacionales D.C., Yamasaki Y., Stevens B.R., Reeves W.H., Satoh M. 2006. Role of non-protein amino acid L-canavanine in autoimmunity. Autoimmun. Rev. 5, 429–435.

    Article  PubMed  CAS  Google Scholar 

  123. Zifa E., Giannouli S., Theotokis P., Stamatis C., Mamuris Z., Stathopoulos C. 2007. Mitochondrial tRNA mutations: Clinical and functional perturbations. RNA Biol. 4, 38–66.

    PubMed  CAS  Google Scholar 

  124. Rorbach J., Yusoff A.A., Tuppen H., Abg-Kamaludin D.P., Chrzanowska-Lightowlers Z.M., Taylor R.W., Turnbull D.M., McFarland R., Lightowlers R.N. 2008. Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res. 36, 3065–3074.

    Article  PubMed  CAS  Google Scholar 

  125. Kron M.A., Cichanowicz S., Hendrick A., Liu A., Leykam J., Kuhn L.A. 2008. Using structural analysis to generate parasite-selective monoclonal antibodies. Protein Sci. 17, 983–989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Safro.

Additional information

Original Russian Text © M. G. Safro, N. A. Moor, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 2, pp. 230–242.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safro, M.G., Moor, N.A. Codases: 50 years after. Mol Biol 43, 211–222 (2009). https://doi.org/10.1134/S0026893309020046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309020046

Key words

Navigation