Skip to main content
Log in

Comparative structural stability of subunits of the potato virus X coat protein in solution and in virus particles

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Several optical methods and differential scanning calorimetry were used to study the structure and stability of free coat protein (CP) molecules and CP molecules in the virion of the potato virus X (PVX), a filamentous plant virus. All criteria suggest that PVX CP (hereinafter, CP) subunits in solution at room temperature display a certain preserved tertiary structure; however, this structure is very unstable and already denatures at 35°C. Very low concentrations of sodium dodecylsulfate or cetyltrimethylammonium bromide also disrupt the CP tertiary structure, three-five molecules of these detergents per one protein molecule being sufficient. However, the secondary structure of CP molecules does not change under the same conditions. Once included into the virion, CP subunits become considerably more stable towards increased temperature and detergents. This combination of a highly labile tertiary structure and a fairly stable secondary structure of free CP can be a structural basis for the recently discovered ability of PVX CP to assume two distinct functional states within the virion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tollin P., Wilson H.R. 1988. Particle structure. In: The Plant Viruses: The Filamentous Plant Viruses. Ed. Milne R.C. N.Y.: Plenum Press, vol. 4, pp. 51–83.

    Google Scholar 

  2. Dobrov E.N., Atabekov J.G. 1989. Reconstitution of plant viruses. In: Plant Viruses. Ed. Mandahar C.L. Boca Raton, Florida: CRC, 173–205.

    Google Scholar 

  3. Novikov V.K., Kimaev V.Z., Atabekov J.G. 1972. Reconstruction of the potato virus X nucleoprotein. Dokl. Akad. Nauk SSSR. 204, 1259–1262.

    PubMed  CAS  Google Scholar 

  4. Kaftanova A.S., Kiselev N.A., Novikov V.K., Atabekov J.G. 1975. Structure of products of protein reassembly and reconstruction of potato virus X. Virology. 67, 283–287.

    Article  PubMed  CAS  Google Scholar 

  5. Rodionova N.P., Karpova O.V., Kozlovsky S.V., Zayakina O.V., Arkhipenko M.V., Atabekov J.G. 2003. Linear remodeling of helical virus by movement protein binding. J. Mol. Biol. 333, 565–572.

    Article  PubMed  CAS  Google Scholar 

  6. Atabekov J.G., Rodionova N.P., Karpova O.V., Kozlovsky S.V., Poljakov V.Yu. 2000. The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology. 271, 259–263.

    Article  PubMed  CAS  Google Scholar 

  7. Atabekov J.G., Rodionova N.P., Karpova O.V., Kozlovsky S.V., Novikov V.K., Arkhipenko M.V. 2001. Translational activation of encapsidated potato virus X RNA by coat protein phosphorylation. Virology. 286, 466–474.

    Article  PubMed  CAS  Google Scholar 

  8. Shalla T.A., Shepard J.F. 1970. An antigenic analysis of potato virus X and of its degraded protein: 2. Evidence for a conformational change associated with the depolymerization of structural protein. Virology. 42, 835–847.

    Article  PubMed  CAS  Google Scholar 

  9. Goodman R.M. 1975. Reconstruction of potato virus X in vitro: 1. Properties of the dissociated protein structural subunits. Virology. 68, 287–298.

    Google Scholar 

  10. Homer R.B., Goodman R.M. 1975. Circular dichroism and fluorescence studies on potato virus X and its structural components. Biochim. Biophys. Acta. 378, 296–304.

    PubMed  CAS  Google Scholar 

  11. Morozov S.Yu., Zakhar’ev V.M., Chernov V.K., Prasolov V.S., Kozlov Yu.V., Atabekov I.G., Skryabin K.G. 1983. Primary structure and localization of the coat protein gene in potato virus X genomic RNA. Dokl. Akad. Nauk SSSR. 271, 211–215.

    CAS  Google Scholar 

  12. Dobrov E.N. 2002. Isolation of potato virus X coat protein by the salt method. In: Praktikum po obshchei virusologii (Practical Course in General Virology). Ed. Atabekov J.G. Moscow: Mosk. Gos. Univ., pp. 85–86.

    Google Scholar 

  13. Gol’dshtein M.I., Grebenshchikov N.I., Kust S.V., Kaftanova A.S., Dobrov E.N., Atabekov J.G. 1990. Effect of proteolytic degradation of potato virus X coat protein on its capacity for reconstruction from RNA and virus infectivity. Mol. Genet. Mikrobiol. Virusol. 2, 9–16.

    Google Scholar 

  14. Ksenofontov A.L., Kozlovskii V.S., Kordyukova L.V., Radyukhin V.A., Timofeeva A.V., Dobrov E.N. 2005. Determination of concentration and aggregate size in influenza virus preparations from true UV absorption spectra. Mol. Biol. 40, 172–179.

    Google Scholar 

  15. Orlov V.N., Kust S.V., Kalmykov P.V., Krivosheev V.P., Dobrov E.N., Drachev V.A. 1998. A comparative differential scanning calorimetric study of tobacco mosaic virus and of its coat protein ts mutant. FEBS Lett. 433, 307–311.

    Article  PubMed  CAS  Google Scholar 

  16. Orlov V.N., Arutyunyan A.M., Kust S.V., Litmanovich E.A., Drachev V.A., Dobrov E.N. 2001. Macroscopic aggregation of the tobacco mosaic virus coat protein. Biokhimiya. 66, 154–162.

    CAS  Google Scholar 

  17. Rafikova E.R., Kurganov B.I., Arutyunyan A.M., Kust S.V., Drachev V.A., Dobrov E.N. 2003. A mechanism of macroscopic (amorphous) aggregation of the tobacco mosaic virus coat protein. Int. J. Biochem. Cell Biol. 35, 1452–1460.

    Article  PubMed  CAS  Google Scholar 

  18. Pivovarova A.V., Mikhailova V.V., Chernik I.S., Chebotareva N.A., Levitsky D.I., Gusev N.B. 2005. Effects of small heat shock proteins on the thermal denaturation and aggregation of F-actin. Biochem. Biophys. Res. Commun. 331, 1548–1553.

    Article  PubMed  CAS  Google Scholar 

  19. Greenfield N., Fasman G.D. 1969. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 10, 4108–4116.

    Article  Google Scholar 

  20. Mattice W.L., Riser J.M., Clark D.S. 1976. Conforma-tional properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry. 15, 4264–4272.

    Article  PubMed  CAS  Google Scholar 

  21. Goodman R.M. 1977. Reconstitution of potato virus X in vitro: 3. Evidence for a role for hydrophobic interactions. Virology. 76, 72–78.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu D.M., Evans R.K. 2006. Molecular mechanism and thermodynamics study of plasmid DNA and cationic surfactants interactions. Langmuir. 22, 3735–3743.

    Article  PubMed  CAS  Google Scholar 

  23. Arutyunyan A.M., Rafikova E.R., Drachev V.A., Dobrov E.N. 2001. Emergence of “β-like” protein spectrum upon protein aggregation not accompanied by “β-structure transition. Biokhimiya. 66, 1702–1705.

    Google Scholar 

  24. Namba K., Pattanayek R., Stubbs G. 1989. Visualization of intact tobacco mosaic virus at 2.9 Å resolution by X-ray fiber diffraction. J. Mol. Biol. 208, 307–325.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Dobrov.

Additional information

Original Russian Text © M.A. Nemykh, V.K. Novikov, A.M. Arutyunyan, P.V. Kalmykov, V.A. Drachev, E.N. Dobrov, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 4, pp. 697–705.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemykh, M.A., Novikov, V.K., Arutyunyan, A.M. et al. Comparative structural stability of subunits of the potato virus X coat protein in solution and in virus particles. Mol Biol 41, 630–637 (2007). https://doi.org/10.1134/S0026893307040164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307040164

Key words

Navigation