Skip to main content
Log in

Effect of the Coat Protein N-Terminal Domain Structure on the Structure and Physicochemical Properties of Virions of Potato Virus X and Alternanthera Mosaic Virus

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The amino acid sequences of the coat proteins (CPs) of the potexviruses potato virus X (PVX) and alternanthera mosaic virus (AltMV) share ~40% identity. The N-terminal domains of these proteins differ in the amino acid sequence and the presence of the N-terminal fragment of 28 residues (∆N peptide) in the PVX CP. Here, we determined the effect of the N-terminal domain on the structure and physicochemical properties of PVX and AltMV virions. The circular dichroism spectra of these viruses differed significantly, and the melting point of PVX virions was 10-12°C higher than that of AltMV virions. Alignment of the existing high-resolution 3D structures of the potexviral CPs showed that the RMSD value between the Cα-atoms was the largest for the N-terminal domains of the two compared models. Based on the computer modeling, the ∆N peptide of the PVX CP is fully disordered. According to the synchrotron small-angle X-ray scattering (SAXS) data, the structure of CPs from the PVX and AltMV virions differ; in particular, the PVX CP has a larger portion of crystalline regions and, therefore, is more ordered. Based on the SAXS data, the diameters of the PVX and AltMV virions and helix parameters in solution were calculated. The influence of the conformation of the PVX CP N-terminal domain and its position relative to the virion surface on the virion structure was investigated. Presumably, an increased thermal stability of PVX virions vs. AltMV is provided by the extended N-terminal domain (ΔN peptide, 28 amino acid residues), which forms additional contacts between the adjacent CP subunits in the PVX virion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

AltMV:

alternanthera mosaic virus

cryo-EM:

cryo-electron microscopy

CP:

coat protein

PVX:

potato virus X

RNP:

ribonucleoprotein

SAXS:

small-angle X-ray scattering

TMV:

tobacco mosaic virus

References

  1. Stubbs, G., and Kendall, A. (2012) Helical viruses, Adv. Exp. Med. Biol., 726, 631-658, https://doi.org/10.1007/978-1-4614-0980-9_28.

    Article  CAS  PubMed  Google Scholar 

  2. Ksenofontov, A. L., Paalme, V., Arutyunyan, A. M., Semenyuk, P. I., Fedorova, N. V., Rumvolt, R., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2013) Partially disordered structure in intravirus coat protein of potyvirus potato virus A, PLoS One, 8, e67830, https://doi.org/10.1371/journal.pone.0067830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Semenyuk, P. I., Karpova, O. V., Ksenofontov, A. L., Kalinina, N. O., Dobrov, E. N., and Makarov, V. V. (2016) Structural properties of potexvirus coat proteins detected by optical methods, Biochemistry (Moscow), 81, 1522-1530, https://doi.org/10.1134/S0006297916120130.

    Article  CAS  PubMed  Google Scholar 

  4. Yang, S., Wang, T., Bohon, J., Gagne, M. E., Bolduc, M., Leclerc, D., and Li, H. (2012) Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus, J. Mol. Biol., 422, 263-273, https://doi.org/10.1016/j.jmb.2012.05.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DiMaio, F., Chen, C. C., Yu, X., Frenz, B., Hsu, Y. H., Lin, N. S., and Egelman, E. H. (2015) The molecular basis for flexibility in the flexible filamentous plant viruses, Nat. Struct. Mol. Biol., 22, 642-644, https://doi.org/10.1038/nsmb.3054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agirrezabala, X., Mendez-Lopez, E., Lasso, G., Sanchez-Pina, M. A., Aranda, M., and Valle, M. (2015) The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses, eLife, 4, e11795, https://doi.org/10.7554/eLife.11795.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grinzato, A., Kandiah, E., Lico, C., Betti, C., Baschieri, S., and Zanotti, G. (2020) Atomic structure of potato virus X, the prototype of the Alphaflexiviridae family, Nat. Chem. Biol., 16, 564-569, https://doi.org/10.1038/s41589-020-0502-4.

    Article  CAS  PubMed  Google Scholar 

  8. Donchenko, E. K., Pechnikova, E. V., Mishyna, M. Y., Manukhova, T. I., Sokolova, O. S., Nikitin, N. A., Atabekov, J. G., and Karpova, O. V. (2017) Structure and properties of virions and virus-like particles derived from the coat protein of Alternanthera mosaic virus, PLoS One, 12, e0183824, https://doi.org/10.1371/journal.pone.0183824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mukhamedzhanova, A. A., Smirnov, A. A., Arkhipenko, M. V., Ivanov, P. A., Chirkov, S. N., Rodionova, N. P., Karpova, O. V., and Atabekov, J. G. (2011) Characterization of Alternanthera mosaic virus and its Coat Protein, Open Virol. J., 5, 136-140, https://doi.org/10.2174/1874357901105010136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hammond, J., Kim, Ik-H., Lim, H.-S. (2017) Alternanthera mosaic virus – an alternative ‘model’ potexvirus of broad relevance, Kor. J. Agricult. Sci., 44, 145-180, https://doi.org/10.7744/kjoas.20170016.

    Article  CAS  Google Scholar 

  11. Erickson, J. W., Bancroft, J. B., and Horne, R. W. (1976) The assembly of papaya mosaic virus protein, Virology, 72, 514-517, https://doi.org/10.1016/0042-6822(76)90180-x.

    Article  CAS  PubMed  Google Scholar 

  12. Ksenofontov, A. L., Dobrov, E. N., Fedorova, N. V., Serebryakova, M. V., Prusov, A. N., Baratova, L. A., Paalme, V., Jarvekulg, L., and Shtykova, E. V. (2018) Isolated Potato Virus A coat protein possesses unusual properties and forms different short virus-like particles, J. Biomol. Struct. Dyn., 36, 1728-1738, https://doi.org/10.1080/07391102.2017.1333457.

    Article  CAS  PubMed  Google Scholar 

  13. Homer, R. B., and Goodman, R. M. (1975) Circular dichroism and fluorescence studies on potato virus X and its structural components, Biochim. Biophys. Acta, 378, 296-304, https://doi.org/10.1016/0005-2787(75)90117-3.

    Article  CAS  PubMed  Google Scholar 

  14. Atabekov, J., Dobrov, E., Karpova, O., and Rodionova, N. (2007) Potato virus X: structure, disassembly and reconstitution, Mol. Plant Pathol., 8, 667-675, https://doi.org/10.1111/j.1364-3703.2007.00420.x.

    Article  CAS  PubMed  Google Scholar 

  15. Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A., Tuukkanen, A., Mertens, H. D. T., Kikhney, A. G., Hajizadeh, N. R., Franklin, J. M., Jeffries, C. M., and Svergun, D. I. (2017) ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions, J. Appl. Crystallogr., 50, 1212-1225, https://doi.org/10.1107/S1600576717007786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Svergun, D. I., Koch, M. H. J., Timmins, P. A., and May, R. P. (2013) Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules, First Edn., Oxford University Press, Oxford.

  17. Ksenofontov, A. L., Petoukhov, M. V., Prusov, A. N., Fedorova, N. V., and Shtykova, E. V. (2020) Characterization of tobacco mosaic virus virions and repolymerized coat protein aggregates in solution by small-angle X-ray scattering, Biochemistry (Moscow), 85, 310-317, https://doi.org/10.1134/S0006297920030062.

    Article  CAS  PubMed  Google Scholar 

  18. Shtykova, E. V., Petoukhov, M. V., Fedorova, N. V., Arutyunyan, A. M., Skurat, E. V., Kordyukova, L. V., Moiseenko, A. V., and Ksenofontov, A. L. (2021) The structure of the potato virus a particles elucidated by small angle X-ray scattering and complementary techniques, Biochemistry (Moscow), 86, 230-240, https://doi.org/10.1134/S0006297921020115.

    Article  CAS  PubMed  Google Scholar 

  19. Miroshnichenko, N. A., Karpova, O. V., Morozov, S., Rodionova, N. P., and Atabekov, J. G. (1988) Translation arrest of potato virus X RNA in Krebs-2 cell-free system: RNase H cleavage promoted by complementary oligodeoxynucleotides, FEBS Lett., 234, 65-68, https://doi.org/10.1016/0014-5793(88)81304-8.

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  21. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D., and Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7, 539, https://doi.org/10.1038/msb.2011.75.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blanchet, C. E., Spilotros, A., Schwemmer, F., Graewert, M. A., Kikhney, A., Jeffries, C. M., Franke, D., Mark, D., Zengerle, R., Cipriani, F., Fiedler, S., Roessle, M., and Svergun, D. I. (2015) Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY), J. Appl. Crystallogr., 48, 431-443, https://doi.org/10.1107/S160057671500254X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J., and Svergun, D. I. (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis, J. Appl. Crystallogr., 36, 1277-1282, https://doi.org/10.1107/S0021889803012779.

    Article  CAS  Google Scholar 

  24. Manalastas-Cantos, K., Konarev, P. V., Hajizadeh, N. R., Kikhney, A. G., Petoukhov, M. V., Molodenskiy, D. S., Panjkovich, A., Mertens, H. D. T., Gruzinov, A., Borges, C., Jeffries, C. M., Svergun, D. I., and Franke, D. (2021) ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis, J. Appl. Crystallogr., 54, 343-355, https://doi.org/10.1107/S1600576720013412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vainshtein, B. (1963) Diffraction of X Rays on Chain Molecules [in Russian], AN SSSR (The USSR Academy of Sciences), Moscow.

  26. Svergun, D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria, J. Appl. Cryst., 25, 495-503, https://doi.org/10.1107/S0021889892001663.

    Article  CAS  Google Scholar 

  27. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605-1612, https://doi.org/10.1002/jcc.20084.

    Article  CAS  PubMed  Google Scholar 

  28. Konarev, P. V., Petoukhov, M. V., and Svergun, D. I. (2001) MASSHA – a graphics system for rigid-body modelling of macromolecular complexes against solution scattering data, J. Appl. Cryst., 34, 527-532, https://doi.org/10.1107/S0021889801006100.

    Article  CAS  Google Scholar 

  29. Kozin, M. B., and Svergun, D. I. (2000) A software system for rigid-body modelling of solution scattering data, J. Appl. Cryst., 33, 775-777, https://doi.org/10.1107/S0021889800001382.

    Article  CAS  Google Scholar 

  30. Bernado, P., Mylonas, E., Petoukhov, M. V., Blackledge, M., and Svergun, D. I. (2007) Structural characterization of flexible proteins using small-angle X-ray scattering, J. Am. Chem. Soc., 129, 5656-5664, https://doi.org/10.1021/ja069124n.

    Article  CAS  PubMed  Google Scholar 

  31. Svergun, D., Barberato, C., and Koch, M. H. J. (1995) CRYSOL – A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Cryst., 28, 768-773, https://doi.org/10.1107/S0021889895007047.

    Article  CAS  Google Scholar 

  32. Tozzini, A. C., Ek, B., Palva, E. T., and Hopp, H. E. (1994) Potato virus X coat protein: a glycoprotein, Virology, 202, 651-658, https://doi.org/10.1006/viro.1994.1386.

    Article  CAS  PubMed  Google Scholar 

  33. Ivanov, P. A., Mukhamedzhanova, A. A., Smirnov, A. A., Rodionova, N. P., Karpova, O. V., and Atabekov, J. G. (2011) The complete nucleotide sequence of Alternanthera mosaic virus infecting Portulaca grandiflora represents a new strain distinct from phlox isolates, Virus Genes, 42, 268-271, https://doi.org/10.1007/s11262-010-0556-6.

    Article  CAS  PubMed  Google Scholar 

  34. Nemykh, M. A., Novikov, V. K., Arutiunian, A. M., Kalmykov, P. V., Drachev, V. A., and Dobrov, E. N. (2007) Comparative study of structural stabylity of potato virus X coat protein molecules in solution and in the virus particles [in Russian], Mol. Biol., 41, 697-705, https://doi.org/10.1134/S0026893307040164.

    Article  CAS  Google Scholar 

  35. Thuenemann, E. C., Byrne, M. J., Peyret, H., Saunders, K., Castells-Graells, R., Ferriol, I., Santoni, M., Steele, J. F. C., Ranson, N. A., Avesani, L., Lopez-Moya, J. J., and Lomonossoff, G. P. (2021) A replicating viral vector greatly enhances accumulation of helical virus-like particles in plants, Viruses, 13, 885, https://doi.org/10.3390/v13050885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Atabekov, J., Nikitin, N., Arkhipenko, M., Chirkov, S., and Karpova, O. (2011) Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles, J. Gen. Virol., 92, 453-456, https://doi.org/10.1099/vir.0.024356-0.

    Article  CAS  PubMed  Google Scholar 

  37. Ksenofontov, A. L., Parshina, E. Y., Fedorova, N. V., Arutyunyan, A. M., Rumvolt, R., Paalme, V., Baratova, L. A., Jarvekulg, L., and Dobrov, E. N. (2016) Heating-induced transition of Potyvirus Potato Virus A coat protein into beta-structure, J. Biomol. Struct. Dyn., 34, 250-258, https://doi.org/10.1080/07391102.2015.1022604.

    Article  CAS  PubMed  Google Scholar 

  38. Nikitin, N., Ksenofontov, A., Trifonova, E., Arkhipenko, M., Petrova, E., Kondakova, O., Kirpichnikov, M., Atabekov, J., Dobrov, E., and Karpova, O. (2016) Thermal conversion of filamentous potato virus X into spherical particles with different properties from virions, FEBS Lett., 590, 1543-1551, https://doi.org/10.1002/1873-3468.12184.

    Article  CAS  PubMed  Google Scholar 

  39. Manukhova, T. I., Evtushenko, E. A., Ksenofontov, A. L., Arutyunyan, A. M., Kovalenko, A. O., Nikitin, N. A., and Karpova, O. V. (2021) Thermal remodelling of Alternanthera mosaic virus virions and virus-like particles into protein spherical particles, PLoS One, 16, e0255378, https://doi.org/10.1371/journal.pone.0255378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baratova, L. A., Fedorova, N. V., Dobrov, E. N., Lukashina, E. V., Kharlanov, A. N., Nasonov, V. V., Serebryakova, M. V., Kozlovsky, S. V., Zayakina, O. V., and Rodionova, N. P. (2004) N-Terminal segment of potato virus X coat protein subunits is glycosylated and mediates formation of a bound water shell on the virion surface, Eur. J. Biochem., 271, 3136-3145, https://doi.org/10.1111/j.1432-1033.2004.04243.x.

    Article  CAS  PubMed  Google Scholar 

  41. Karpova, O. V., Arkhipenko, M. V., Zaiakina, O. V., Nikitin, N. A., Kiseleva, O. I., Kozlovskii, S. V., Rodionova, N. P., and Atabekov, I. G. (2006) Translational regulation of potato virus X RNA-coat protein complexes: the key role of a coat protein N-terminal peptide [in Russian], Mol. Biol., 40, 703-710, https://doi.org/10.1134/S0026893306040157.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The experiments on the isolation and characterization of viral particles were performed with the assistance of the Interdisciplinary Research and Education School “Molecular Technologies of Living Systems and Synthetic Biology”, Lomonosov Moscow State University, using the equipment purchased under the Program of Development of Lomonosov Moscow State University.

Funding

The work was supported by the Ministry of Science and Higher Education within the framework of the State Assignment for the Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences (SAXS experiments).

Author information

Authors and Affiliations

Authors

Contributions

A. L. Ksenofontov and E. V. Shtykova developed the concept and supervised the study; A. L. Ksenofontov, M. V. Petoukhov, V. V. Matveev, N. V. Fedorova, A. M. Arutyunyan, T. I. Manukhova, and E. A. Evtushenko performed the experiments; M. V. Petoukhov, O. V. Karpova, and P. I. Semenyuk discussed research results; A. L. Ksenofontov, M. V. Petoukhov, and E. V. Shtykova wrote the article; N. A. Nikitin and O. V. Karpova edited the manuscript.

Corresponding author

Correspondence to Alexander L. Ksenofontov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksenofontov, A.L., Petoukhov, M.V., Matveev, V.V. et al. Effect of the Coat Protein N-Terminal Domain Structure on the Structure and Physicochemical Properties of Virions of Potato Virus X and Alternanthera Mosaic Virus. Biochemistry Moscow 88, 119–130 (2023). https://doi.org/10.1134/S0006297923010108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923010108

Keywords

Navigation