Skip to main content
Log in

Curdlan Gum Production Using Marine Bacteria Isolated from Red Seaweeds: Screening and Optimization Studies

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Exopolysaccharides of marine microbial origin are in demand in industry. Seaweeds are marine macroalgae that harbor diverse microorganisms with unique properties. In this perspective, the present study was focused on screening and isolation of marine bacteria from seaweeds for the production of an exopolysaccharide, curdlan gum, which is a linear (1 → 3)-β-d-glucan neutral exopolysaccharide produced by bacteria under conditions of nitrogen starvation. It has unique thermo gelation properties and extensive applications. A total of 78 marine bacteria were screened and isolated from different seaweeds and assessed for their potential for curdlan gum production using aniline blue agar. Curdlan gum was recovered using acidic precipitation. High-yield isolate, screened from red seaweed (Gracilaria foliifera) was designated as “RSW2n” and chosen as a potential producer. The identity of the isolate RSW2n was revealed as Enterobacter cloacae subsp. dissolvens based on its morphology, biochemical characteristics, and 16S rRNA gene sequencing. Optimization of the process parameters such as initial pH, inoculum percentage, production time, and production medium volume by single factor at a time method yielded 4.2 g/L of curdlan gum using Enterobacter cloacae strain RSW2n. Characterization of curdlan gum produced by this marine isolate was carried out using XRD and FT-IR analyses. Further, production of curdlan gum by Enterobacter cloacae RSW2n with different carbon sources (glucose, sucrose, fructose, maltose, glycerol, dates syrup, palm oil and starch) was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Arli, S.D., Trivedi, U.B., and Patel, K.C., Curdlan-like exopolysaccharide production by Cellulomonas flavigena UNP3 during growth on hydrocarbon substrates, World J. Microbiol. Biotechnol., 2011, vol. 27, pp. 1415–1422. https://doi.org/10.1007/s11274-010-0593-2

    Article  CAS  PubMed  Google Scholar 

  2. Arunkumar, K. and Karthik, R., Screening and isolation of bacteria associated with seaweeds occurring along the coast of Thondi (Bay of Bengal, India) for chitinolytic activity, Int. J. Res. Sci. Innov. Appl. Sci., 2013, vol. 1, pp. 14–18.

  3. Baeva, E., Bleha, R., Lavrova, E., Sushytskyi, L., Čopíková, J., Jablonsky, I., and Synytsya, A., Polysaccharides from basidiocarps of cultivating mushroom Pleurotusostreatus: isolation and structural characterization, Molecules, 2019, vol. 24, p. 2740. https://doi.org/10.3390/molecules24152740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brenner, D.J., and Farmer, III, J., Enterobacteriaceae, in Bergey’s Manual of Systematics of Archaea and Bacteria, 2015, pp. 1–24.

  5. Cai, W.D., Qiu, W.Y., Ding, Z.C., Wu, L.X., and Yan, J.K., Conformational and rheological properties of a quaternary ammonium salt of curdlan, Food Chem., 2019, vol. 280, pp. 130–138. https://doi.org/10.1016/j.foodchem.2018.12.059

    Article  CAS  PubMed  Google Scholar 

  6. Chen, M. and Liang, P., Synthesis and antibacterial activity of quaternized curdlan, Polym. Bull., 2017, vol. 74, pp. 4251–4266.

    Article  CAS  Google Scholar 

  7. Evans, S.G., Morrison, D., Kaneko, Y., and Havlik, I., The effect of curdlan sulphate on development in vitro of Plasmodium falciparum, Trans. R. Soc. Trop. Med., 1998, vol. 92, pp. 87–89. https://doi.org/10.1016/s0035-9203(98)90969-5

    Article  CAS  Google Scholar 

  8. Eweda, W.E., Sharaf, M.S., and El Sayed, A.M., Production of curdlan by some bacteria isolated from Egyptian soils, MiddleEast J. Appl. Sci., 2015, vol. 1, pp. 102–118.

    Google Scholar 

  9. Fang, J., Kawano, S., Tajima, K., and Kondo, T., In vivo curdlan/cellulose bionanocomposite synthesis by genetically modified Gluconacetobacter xylinus, Biomacromolecules, 2015, vol.16, pp. 3154–3160. https://doi.org/10.1021/acs.biomac.5b01075

    Article  CAS  PubMed  Google Scholar 

  10. FDA, Food additives permitted for direct addition to food for human consumption: curdlan 21 CFR Part 172, Federal Register, 1996, vol. 61, pp. 65941–65942.

    Google Scholar 

  11. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evol., 1985, vol. 39, pp. 783–791. https://doi.org/10.2307/2408678

    Article  Google Scholar 

  12. Godale, C.H. and Injal, A.S., Curdlan Production by Agrobacterium radiobacter and wide array of its applications in medicine, Indian J. Appl. Res., 2016, vol. 6, pp. 574–576.

    Google Scholar 

  13. Harada, T., Fujimori, K., Hirose, S., and Masada, M., Growth and β-glucan 10C3K production by a mutant of Alcaligenes faecalis var. myxogenes in defined medium, Agric. Biol. Chem., 1966, vol. 30, pp. 764–769. https://doi.org/10.1080/00021369.1966.10858682

    Article  CAS  Google Scholar 

  14. Iyer, A., Mody, K., and Jha, B., Characterization of an exopolysaccharide produced by a marine Enterobacter cloaca. Indian. J. Exp. Biol., 2005, vol. 43, pp. 467–471.

    CAS  PubMed  Google Scholar 

  15. Jung, D.Y., Cho, Y.S., Chung, C.H., Jung, D.I., Kim, K., and Lee, J.W., Improved production of curdlan with concentrated cells of Agrobacterium sp., Biotechnol. Bioprocess Eng., 2001, vol. 6, pp. 107–111.

    Article  CAS  Google Scholar 

  16. Kim, B.S., Jung, I.D., Kim, J.S., Lee, J.H., Lee, I.Y., and Lee, K.B., Curdlan gels as protein drug delivery vehicles, Biotechnol. Lett., 2000, vol. 22, pp. 127–1130. https://doi.org/10.1023/A:1005636205036

    Article  CAS  Google Scholar 

  17. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol.35, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, I.Y., Seo, W.T., Kim, G.J., Kim, M.K., Park, C.S., and Park, Y.H., Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species, J. Ind. Microbiol. Biotechnol., 1997, vol. 18, pp. 255–259. https://doi.org/10.1038/sj.jim.2900378

    Article  CAS  Google Scholar 

  19. Mary Josephine, M., Usha, R., and Maria Victorial Rani, S., Current status of seaweed diversity and their seasonal availability at Hare Island, Gulf of Mannar, Sci. Res. Report., 2013, vol. 3, pp. 146–151.

    Google Scholar 

  20. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000. https://doi.org/10.1111/j.1558-5646.1985. tb00420.x 247

  21. Nicolaus, B., Kambourova, M., and Oner, E.T., Exopolysaccharides from extremophiles: from fundamentals to biotechnology, Environ. Technol., 2010, vol. 31, pp. 1145–1158. https://doi.org/10.1080/09593330903552094

    Article  CAS  PubMed  Google Scholar 

  22. Phillips, K.R., Pik, J., Lawford, H.G., Lavers, B., Kligerman, A., and Lawford, G.R., Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture, Can. J. Microbiol., 1983, vol. 29, pp. 1331–1338. https://doi.org/10.1139/m83-207

    Article  CAS  PubMed  Google Scholar 

  23. Prado, B.M., Kim, S., Özen, B.F and Mauer, L.J., Differentiation of carbohydrate gums and mixtures using Fourier transform infrared spectroscopy and chemometrics, J. Agric. Food Chem., 2005, vol. 53, pp. 2823–2829. https://doi.org/10.1021/jf0485537

    Article  CAS  PubMed  Google Scholar 

  24. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Bio-l. Evol., 1987, vol. 4, pp. 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  Google Scholar 

  25. Salah, R.B., Jaouadi, B., Bouaziz, A., Chaari, K., Blecker, C., Derrouane, C., and Besbes, S., Fermentation of date palm juice by curdlan gum production from Rhizobium radiobacter ATCC 6466™: purification, rheological and physico-chemical characterization, LWT—Food Sci. Technol, 2011, vol. 44, pp. 1026–1034. https://doi.org/10.1016/j.lwt.2010.11.023

    Article  CAS  Google Scholar 

  26. Shivakumar, S. and Vijayendra, S.V.N., Production of exopolysaccharides by Agrobacterium sp. CFR-24 using coconut water–a byproduct of food industry, Lett. Appl. Microbiol., 2006, vol. 42, pp. 477–482. https://doi.org/10.1111/j.1472-765X.2006.01881.x

    Article  CAS  PubMed  Google Scholar 

  27. Stasinopoulos, S.J., Fisher, P.R., Stone, B.A., and Stanisich, V.A., Detection of two loci involved in (1–>3)-beta-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene, Glycobiology, 1999, vol. 9, pp. 31–41. https://doi.org/10.1093/glycob/9.1.31

    Article  CAS  PubMed  Google Scholar 

  28. Synytsya, A. and Novak, M., Structural analysis of glucans, Ann. Transl. Med., 2014, vol. 2, pp. 17–31. https://doi.org/10.3978/j.issn.2305-5839.2014.02.07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang, J., Zhen, H., Wang, N., Yan, Q., Jing, H., and Jiang, Z., Curdlan oligosaccharides having higher immunostimulatory activity than curdlan in mice treated with cyclophosphamide, Carbohydr. Polym., 2019, vol. 207, pp. 131–142. https://doi.org/10.1016/j.carbpol.2018.10.120

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Q., Sun, J., Wang, Z., Hang, H. Zhao, W., Zhuang, Y., and Chu, J., Kinetic analysis of curdlan production by Alcaligenes faecalis with maltose, sucrose, glucose and fructose as carbon sources, Bioresour. Technol., 2018, vol. 259, pp. 319–324. https://doi.org/10.1016/j.biortech.2018.03.059

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, L., Fu, J., Bian, L., Chang, T., and Zhang, C., Preparation of a novel curdlan/bacterial cellulose/cinnamon essential oil blending film for food packaging application, Int. J. Biol. Macromol., 2022, vol. 212, pp. 211–219. https://doi.org/10.1016/j.ijbiomac.2022.05.137

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

University Research Fellowship provided by management of Kalasalingam Academy of Research and Education to Mrs. Ezhilarasi is gratefully acknowledged. The authors acknowledge the support provided by International Research Centre, Kalasalingam Academy of Research and Management for characterization studies. The authors express their sincere gratitude to Dr. M. Palanisamy, Scientist-E of Botanical Survey of India (BSI), Southern Regional Centre, Coimbatore, for his support in the identification of marine seaweeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vanavil.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhilarasi, P., Vanavil, B. Curdlan Gum Production Using Marine Bacteria Isolated from Red Seaweeds: Screening and Optimization Studies. Microbiology 92, 725–733 (2023). https://doi.org/10.1134/S0026261723600131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723600131

Keywords:

Navigation