Skip to main content
Log in

Improved production of curdlan with concentrated cells ofAgrobacterium sp.

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The addition of a limited concentration of yeast extract to a minimal salt medium (MSM) enhanced cell growth and increased the production of curdlan whereas nitrogenlimitation was found to be essential for the higher production of curdlan byAgrobacterium sp. ATCC 31749. As the amount of the inoculum increased, the cell growth as well as the production of curdlan also increased in the MSM without a nitrogen source. The cell growth and production of curdlan increased as the initial pH of the medium decreased as low as 5.0. The conversion rate and concentration of curdlan from 2% (w/v) glucose in the MSM with concentrated cells under nitrogen deletion was 67% and 13.4 g/L, respectively. The highest conversion rate of curdlan under the conditions optimized in this study was 71% when the glucose concentration was 1% (w/v).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harada, T., K. Fujimori, S. Hirose, and M. Masada (1966) Crowth and β-1,3 glucan 10C3K production by a mutant ofAlcaligenes faecalis var.myxogenes in defined medium.Agr. Biol. Chem. 30: 764–769.

    CAS  Google Scholar 

  2. Harada, T., A. Misaki, and H. Saito (1968) Curdlan: A bacterialgel-forming β-1,3-glucan.Arch. Biochem. 124: 292–298.

    Article  CAS  Google Scholar 

  3. Maeda, I., H. Saito, M. Masada, A. Misaki, and T. Harada (1967) Properties of gels formed by heat treatment of curdlan, a bacterial β-1,3 glucan.Agr. Biol. Chem. 31: 1184–1188.

    CAS  Google Scholar 

  4. Harada, T., M. Masada, K. Fujimori, and I. Maeda (1966) Production of a firm, resilient gel-forming polysaccharide by a mutant ofAlcaligenes faecalis var.myxogenes 10C3.Agr. Biol. Chem. 30: 196–198.

    Google Scholar 

  5. Ayers, S. H. and P. Rupp (1920) Extracts of pure dry yeast for culture media.J. Bacteriol. 5: 89–98.

    CAS  Google Scholar 

  6. Harada, T., M. Masada, K. Fujimori, and I. Maeda (1966) Production of firm, resilient gel-forming polysaccharide in natural medium by a mutant ofAlcaligenes faecalis var.myxogenes 10C3.J. Ferment. Technol. 44: 20–24.

    CAS  Google Scholar 

  7. Phillips, K. R. and H. C. Lawford (1983) Curdlan: its properties and production in batch and continuous fermentation.Prog. Ind. Microbiol. 18: 201–229.

    CAS  Google Scholar 

  8. Lawford, H. G., K. R. Phillips, and G. R. Lawford (1982) A two stage continuous process for the production of thermogelable curdlan-type expolysaccharide.Biotechnol. Lett. 4: 689–694.

    Article  CAS  Google Scholar 

  9. Lee, I. Y., W. T. Seo, G. J. Kim, C. S. Park, and Y. H. Park (1997) Production of curdlan of using sucrose or sugar cane molasses by two-step fed-batch cultivation ofAgrobacterium species.J. Ind. Microbiol. Biotechnol. 18: 255–259.

    Article  CAS  Google Scholar 

  10. Seviour, R. J. and B. Kristiansen (1983) Effect of ammonium ion concentration on polysaccharide production byAureobasidium pullulans in batch culture.Eur. J. Appl. Microbiol. Biotechnol. 17: 178–181.

    Article  CAS  Google Scholar 

  11. Ko, S. H., H. S. Lee, S. H. Park, and H. K. Lee (2000) Optimal conditions for the production of exopolysaccharide by marine microorganismHahella chejuensis.Biotechnol. Bioprocess Eng. 5: 181–185.

    Article  CAS  Google Scholar 

  12. Orts, W. J., J. D. Rousseau, and H. G. Lawfor ((1987) Improved microbial production of curdlan type-polysaccharide. pp. 459–469. In: S. Stivala, V. Crescenzi, and I. C. M. Dea (eds.).Industrial Polysaccharides. Gordon Breach Science, New York, USA.

    Google Scholar 

  13. Phillips, K. R., J. Pik, H. G. Lawford, B. Lavers, A. Kligerman, and G. R. Lawford (1983) Production of curdlantype polysaccharide byAlcaligenes faecalis in batch and continuous culture.Can. J. Microbiol. 29: 1331–1338.

    Article  CAS  Google Scholar 

  14. Lawford, H. G. (1982) Continuous process for the production of gelable exopolysaccharide.US Patent 4,355,106.

  15. Lawford, H. G. and J. D. Rousseau (1992) Production of β-1,3-glucan exopolysaccharide in low shear systems.Appl. Biochem. Biotechnol. 34/35: 597–612.

    Article  Google Scholar 

  16. Lee, J. W., W. G. Yeomans, A. F. Allen, D. L. Kaplan, F. Deng, and R. A. Gross (1997) Exopolymers from curdlan production: incorporation of glucose-related sugars byAgrobacterium sp. strain ATCC 31749.Can. J. Microbiol. 43: 149–156.

    Article  CAS  Google Scholar 

  17. Lee, J. W., W. G. Yeomans, A. F. Allen, D. L. Kaplan, and R. A. Gross (1997) Microbial production of water-soluble non curdlan type exopolymer-B with controlled composition byAgrobacterium sp.Biotechnol. Lett. 19: 1217–1221.

    Article  CAS  Google Scholar 

  18. Chaplin, M. (1982) A rapid and sensitive method for the analysis of carbohydrate components in glycoproteins using gas-liquid chromatography.Anal. Biochem. 123: 336–341.

    Article  CAS  Google Scholar 

  19. Sharmila, M., K. Ramanans, and N. Sethunathan (1989) Effect of yeast extract on the degradation of organophosphorous insecticides by soil enrichment and bacterial cultures.Can. J. Microbiol. 35: 1105–1110.

    Article  CAS  Google Scholar 

  20. Shen, C. F., N. Kosaric, and R. Blaszezyk (1993) Properties of anaerobic sludge as affected by yeast extract, cobalt and iron suppleents.Appl. Microbiol. Biotechnol. 39: 132–137.

    CAS  Google Scholar 

  21. Kim, M. K., I. Y. Lee, J. H. Ko, Y. H. Rhee, and Y. H. Park (1999) Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis inAgrobacterium species.Biotechnol. Bioeng. 62: 317–323.

    Article  CAS  Google Scholar 

  22. Ebbole, D. J. (1998) Carbon catabolite repression of gene expression and condition inNeurospora crassa.Fungal Gen. Biol. 25: 15–21.

    Article  CAS  Google Scholar 

  23. Anwar, M. N., M. Suto, and F. Tomita (1996) Isolation of mutants ofPenicillium purpurogen resistant to catabolite repression.Appl. Microbiol. Biotechnol. 45: 684–687.

    Article  CAS  Google Scholar 

  24. Wolff, J. A., C. H. MacGregor, R. C. Eisenberg, and P. V. Phibbs Jr. (1991) Isolation and characterization of catabolite repression control mutants ofPseudomonas acruginosa PAO.J. Bacteriol. 173: 4700–4706.

    CAS  Google Scholar 

  25. Gancedo, J. M. (1998) Yeast carbon catabolite repression.Microbiol. Mol. Biol. Rev. 62: 334–361.

    CAS  Google Scholar 

  26. Lee, I. Y., M. K. Kim, W. T. Lee, J. K. Seo, H. W. Jung, and Y. H. Park (1999) Influence of agitation speed on production of curdlan byAgrobacterium species.Bioproess Eng. 20: 283–287.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, DY., Cho, YS., Chung, CH. et al. Improved production of curdlan with concentrated cells ofAgrobacterium sp.. Biotechnol. Bioprocess Eng. 6, 107–111 (2001). https://doi.org/10.1007/BF02931955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931955

Keywords

Navigation