Skip to main content
Log in

Methane Cycle in a Littoral Site of a Temperate Freshwater Lake

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Eutrophication of lakes results in the intensification of anaerobic processes, including methanogenesis, and therefore in enhanced emission of methane. A littoral area with its variable oxygen regime is the first to react to eutrophication. The diversity of microbial communities in littoral areas is insufficiently studied, and little data are available concerning the methane cycle microorganisms. In this work, the methanogenesis and methane oxidation were investigated in the littoral site of a freshwater temperate Lake Senezh (Russia). A combination of analytical, microbiological and molecular techniques was used, including physicochemical analyses, high-throughput sequencing, potential activity measurements, and cultivation on selective media. The littoral site was found to be an extremely labile ecological niche, which harbors a diverse community containing aerobic, facultative anaerobic and anaerobic microorganisms, both autotrophs and heterotrophs, which may perform all reactions of the N, S, and CH4 cycles. Methane formation was carried out via hydrogenotrophic, acetoclastic, methylotrophic, and methyl-reducing pathways. Among methanotrophs, type I organisms predominated; type II, nitrate- and nitrite-dependent methanotrophs were also revealed. Comparison of the average rates of methanogenesis and aerobic methane oxidation suggests that all methane, which may potentially be formed in the littoral site of the lake, could simultaneously be oxidized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Anderson, N.J., Bennion, H., and Lotter, A.F., Lake eutrophication and its implications for organic carbon sequestration in Europe, Glob. Chang. Biol., 2014, vol. 20, pp. 2741–2751.

    Article  CAS  PubMed  Google Scholar 

  2. Bechtel, A. and Schubert, C.J., A biogeochemical study of sediments from the eutrophic Lake Lugano and the oligotrophic Lake Brienz, Switzerland, Org. Geochem., 2009, vol. 40, pp. 1100–1114.

    Article  CAS  Google Scholar 

  3. Billard, E., Domaizon, I., Tissot, N., Arnaud, F., and Lyauteyet, E., Multi-scale phylogenetic heterogeneity of archaea, bacteria, methanogens and methanotrophs in lake sediments, Hydrobiologia, 2015, vol. 751, pp. 159–173.

    Article  Google Scholar 

  4. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P., DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods., 2016, vol. 13, pp. 581–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castelle, C.J., Wrighton, K.C., Thomas, B.C., Hug, L.A., Brown, C.T., Wilkins, M.J., Frischkorn, K.R., Tringe, S.G., Singh, A., Markillie, L.M., Taylor, R.C., Williams, K.H., and Banfield, J.F., Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling, Curr. Biol., 2015, vol. 25, pp. 690–701.

    Article  CAS  PubMed  Google Scholar 

  6. Castelle, C.J., Brown, C.T., Anantharaman, K., Probst, A.J., Huang, R.H., and Banfield, J.F., Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations, Nat. Rev. Microbiol., 2018, vol. 16, pp. 629–645.

    Article  CAS  PubMed  Google Scholar 

  7. Collins, D.A., Akberdin, I.R., and Kalyuzhnaya, M.G., Methylobacter, in Bergey’s Manual of Systematics of Archaea and Bacteria, Whitman, W.B., Rainey, F.A., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., Hedlund, B.P., and Dedysh, S.N., Eds., New York: Wiley, 2017, pp. 1−12. https://doi.org/10.1002/9781118960608.gbm01179.pub2

    Book  Google Scholar 

  8. Cozannet, M., Borrel, G., Roussel, E., Moalic, Y., Allioux, M., Sanvoisin, A., Toffin, L., and Alain, K., New insights into the ecology and physiology of Methanomassiliicoccales from terrestrial and aquatic environments, Microorganisms, 2021, vol.9, p. 30.

    Article  CAS  Google Scholar 

  9. Crevecoeur, S., Vincent, W.F., Comte, J., Matveev, A., and Lovejoy, C., Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds, PLoS One, 2017, vol. 12, p. e0188223.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dedysh, S.N., Kulichevskaya, I.S., Huber, K.J., and Overmann, J., Defining the taxonomic status of described subdivision 3 Acidobacteria: proposal of Bryobacteraceae fam. nov., Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 498−501.

    Article  CAS  PubMed  Google Scholar 

  11. Diaz, R.J. and Rosenberg, R., Marine benthic hypoxia: a review of its ecological effects and the behavioural response of benthic macrofauna, in Oceanography and Marine Biology: An Annual Review, Ansell, A.D., Gibson, R.N., Barnes, M., Eds., London: UCL, 1995, pp. 245−303.

    Google Scholar 

  12. Diaz, R.J. and Rosenberg, R., Spreading dead zones and consequences for marine ecosystems, Science, 2008, vol. 321, pp. 926−929.

    Article  CAS  PubMed  Google Scholar 

  13. Dinasquet, J., Ortega-Retuerta, E., Lovejoy, C., and Obernosterer, I., Editorial: microbiology of the rapidly changing polar environments, Front. Mar. Sci., 2018, vol. 5, p. 154.

    Article  Google Scholar 

  14. Dridi, B., Fardeau, M.-L., Ollivier, B., Raoult, D., and Drancourt, M., Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 1902–1907.

    Article  CAS  PubMed  Google Scholar 

  15. Eisenberg, T., Glaeser, S.P., Nicklas, W., Mauder, N., Contzen, M., Aledelbi, K., and Kämpfer, P., Streptobacillus felis sp. nov., isolated from a cat with pneumonia, and emended descriptions of the genus Streptobacillus and of Streptobacillus moniliformis, Int. J. Syst. Evol. Microbiol., 2015a, vol. 65, pp. 2172−2178.

    Article  CAS  PubMed  Google Scholar 

  16. Eisenberg, T., Glaeser, S.P., Ewers, C., Semmler, T., Nicklas, W., Rau, J., Mauder, N., Hofmann, N., Imaoka, K., Kimura, M., and Kämpfer, P., Streptobacillus notomytis sp. nov., isolated from a spinifex hopping mouse (Notomys alexis Thomas, 1922), and emended description of Streptobacillus Levaditi et al. 1925, Eisenberg et al. 2015 emend., Int. J. Syst. Evol. Microbiol., 2015b, vol. 65, pp. 4823−4829.

    Article  CAS  PubMed  Google Scholar 

  17. Fan, X. and Xing, P., Differences in the composition of archaeal communities in sediments from contrasting zones of Lake Taihu, Front. Microbiol., 2016, vol. 7, p. 1510.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feldewert, C., Lang, K., and Brune, A., The hydrogen threshold of obligately methyl-reducing methanogens, FEMS Microbiol. Let., 2020, vol. 367, p. fnaa137.

  19. Fuchs, A., Lyautey, E., Montuelle, B., and Casper P., Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes, J. Geophys. Res. Biogeosci., 2016, vol. 121, pp. 1394–1406.

    Article  CAS  Google Scholar 

  20. Galchenko, V.F., Methanotrophnye bacterii (Methanotrophic Bacteria), Moscow: GEOS, 2008.

  21. Graf, J.S., Mayr, M.J., Marchant, H.K., Tienken, D., Hach, P.F., Brand, A., Schubert, C.J., Kuypers, M.M.M., and Milucka, J., Bloom of a denitrifying methanotroph, “Candidatus Methylomirabilis limnetica,” in a deep stratified lake, Environ. Microbiol., 2018, vol. 20, pp. 2598–2614.

    Article  CAS  PubMed  Google Scholar 

  22. Han, X., Schubert, C.J., Fiskal, A., Dubois, N., and Lever, M.A., Eutrophication as a driver of microbial community structure in lake sediments, Environ Microbiol., 2020, vol. 22, pp. 3446−3462.

    Article  CAS  PubMed  Google Scholar 

  23. He, R., Wooller, M.J., Pohlman, J.W., Quensen, J., Tiedje, J.M., and Leigh, M.B., Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes, Appl. Environ. Microbiol., 2012, vol. 78, pp. 4715–4723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huber, H. and Stetter, K.O., Thermoplasmatales, in The Prokaryotes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E., Eds., New York: Springer, 2006, pp. 101–112.

    Google Scholar 

  25. Hugerth, L.W., Wefer, H.A., Lundin, S., Jakobsson, H.E., Lindberg, M., Rodin, S., Engstrand, L., and Andersson, A.F., DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies, Appl. Environ. Microbiol., 2014, vol. 80, pp. 5116–5123.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Imachi, H., Nobu, M.K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y., Uematsu, K., Ikuta, T., Ito, M., Matsui, Y., Miyazaki, M., Murata, K., Saito, Y., Sakai, S., et al., Isolation of an archaeon at the prokaryote-eukaryote interface, Nature, 2020, vol. 577, pp. 519−525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeske, O., Jogler, M., Petersen, J., Sikorski, J., and Jogler, C., From genome mining to phenotypic microarrays: Planctomycetes as source for novel bioactive molecules, Antonie van Leeuwenhoek, 2013, vol. 104, pp. 551−567.

    Article  CAS  PubMed  Google Scholar 

  28. Jonkers, H.M., van der Maarel, M.J.E.C., van Gemerden, H., and Hansen, T.A., Dimethylsulfoxide reduction by marine sulfate-reducing bacteria, FEMS Microbiol. Lett., 1996, vol. 136, pp. 283−287.

    Article  CAS  Google Scholar 

  29. Kadnikov, V.V., Savvichev, A.S., Mardanov, A.V., Beletsky, A.V., Merkel, A.Y., Ravin, N.V., and Pimenov, N.V., Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe, Antonie van Leeuwenhoek, 2019, vol. 112, pp. 1801–1814.

    Article  CAS  PubMed  Google Scholar 

  30. Kallistova, A.Yu., Merkel, A.Yu., Tarnovetskii, I.Yu., and Pimenov, N.V., Methane formation and oxidation by prokaryotes, Microbiology (Moscow), 2017, vol. 86, pp. 671−691.

    Article  CAS  Google Scholar 

  31. Kallistova, A., Kadnikov, V., Rusanov, I., Kok-ryatskaya, N., Beletsky, A., Mardanov, A., Savvichev, A., Ravin, N., and Pimenov, N., Microbial communities involved in aerobic and anaerobic methane cycling in a meromictic ferruginous subarctic lake, Aquat. Microb. Ecol., 2018, vol. 82, pp. 1−18.

    Article  Google Scholar 

  32. Kallistova, A.Yu., Savvichev, A.S., Rusanov, I.I., and Pimenov, N.V., Thermokarst lakes, ecosystems with intense microbial processes of the methane cycle, Microbiology (Moscow), 2019, vol. 88, pp. 649−661.

    Article  CAS  Google Scholar 

  33. Kallistova, A., Merkel, A., Kanapatskiy, T., Bol-tyanskaya, Y., Tarnovetskii, I., Perevalova, A., Kevbrin, V., Samylina, O., and Pimenov, N., Methanogenesis in the Lake Elton saline aquatic system, Extremophiles, 2020, vol. 24, pp. 657–672.

    Article  CAS  PubMed  Google Scholar 

  34. Kallistova, A.Yu., Kadnikov, V.V., Savvichev, A.S., Rusanov, I.I., Dvornikov, Yu.A., Leibman, M.O., Khomutov, A.V., Ravin, N.V., and Pimenov, N.V., Comparative study of methanogenic pathways in the sediments of thermokarst and polygenetic Yamal lakes, Microbiology (Moscow), 2021, vol. 90, pp. 261–267.

    Article  CAS  Google Scholar 

  35. Kantor, R.S., van Zyl, A.W., van Hille, R.P., Thomas, B.C., Harrison, S.T., and Banfield, J.F., Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unraveled with genome-resolved metagenomics, Environ. Microbiol., 2015, vol. 17, pp. 4929−4941.

    Article  CAS  PubMed  Google Scholar 

  36. Kodama, Y. and Watanabe, K., Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 2297−2300.

    Article  CAS  PubMed  Google Scholar 

  37. Kojima, H. and Fukui, M., Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2862−2866.

    Article  CAS  PubMed  Google Scholar 

  38. Kojima, H. and Fukui, M., Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 1651−1655.

    Article  CAS  PubMed  Google Scholar 

  39. Kojima, H., and Fukui, M., Sulfurisoma sediminicola gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 1587−1592.

    Article  CAS  PubMed  Google Scholar 

  40. Konstantinov, A.S., Obshchaya gidrobiologiya (General Hydrobiology), Moscow: Vysshaya shkola, 1986, 4th ed.

  41. Kulichevskaya, I.S., Suzina, N.E., Rijpstra, W.I.C., Damsté, J.S.S., and Dedysh, S.N., Paludibaculum fermentans gen. nov., sp. nov., a facultative anaerobe capable of dissimilatory iron reduction from subdivision 3 of the Acidobacteria, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 2857−2864.

    Article  CAS  PubMed  Google Scholar 

  42. Li, Q.M., Zhou, Y.L., Wei, Z.F., and Wang, Y., Phylogenomic insights into distribution and adaptation of Bdellovibrionota in marine waters, Microorganisms, 2021, vol. 9, p. 757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, X., Li, M., Castelle, C.J., Probst, A.J., Zhou, Z., Pan, J., Liu, Y., Banfield, J.F., and Gu, J.D., Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages, Microbiome, 2018, vol. 6, p. 102.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lyautey, E., Billard, E., Tissot, N., Jacquet, S., and Domaizon, I., Seasonal dynamics of abundance, structure, and diversity of methanogens and methanotrophs in lake sediments, Microb. Ecol., 2021, vol. 82, pp. 559−571.

    Article  CAS  PubMed  Google Scholar 

  45. Martinez-Cruz, K., Leewis, M.C., Herriott, I.C., Sepulveda-Jauregui, A., Anthony, K.W., Thalasso, F., and Leigh, M.B., Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments, Sci. Total Environ., 2017, vols. 607–608, pp. 23–31.

    Article  PubMed  Google Scholar 

  46. Martynov, A.A., Spravochnik rybolova-sportsmena Podmoscow’ya (Sports Angler Handbook of the Moscow Region), Moscow: Moskovskaya Pravda, 1988, 2nd ed.

  47. Martin, G., Rissanen, A.J., Garcia, S.L., Mehrshad, M., Buck, M., and Peura, S., Candidatus Methylumidiphilus drives peaks in methanotrophic relative abundance in stratified lakes and ponds across northern landscapes, Front. Microbiol., 2021, vol. 12, p. 669937.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mayr, M.J., Zimmermann, M., Guggenheim, C., Brand, A., and Bürgmann, H., Niche partitioning of methane-oxidizing bacteria along the oxygen-methane counter gradient of stratified lakes, ISME J., 2020, vol. 14, pp. 274−287.

    Article  CAS  PubMed  Google Scholar 

  49. McAuliffe, C., Gas chromatographic determination of solutes by multiple phase equilibrium, Chem. Technol., 1971, vol. 1, pp. 46–51.

    Google Scholar 

  50. McMurdie, P.J. and Holmes, S., Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data, Pac. Symp. Biocomput., 2012, pp. 235–246.

  51. Merkel, A.Yu., Tarnovetskii, I.Yu., Podosokorskaya, O.A., and Toshchakov, S.V., Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities, Microbiology (Moscow), 2019, vol. 88, pp. 671–680.

    Article  CAS  Google Scholar 

  52. Moschos, S., Piperagkas, O., and Karayanni, H.A., Vertically and temporally diverse bacterial community in a shallow lake-water sediment site of a eutrophic lake, Inland Waters, 2021, vol. 11, pp. 141−153.

    Article  CAS  Google Scholar 

  53. Nakagawa, Y. and Yamasato, K., Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int. J. Syst. Bacteriol. 1996, vol. 46, pp. 599−603.

    Article  Google Scholar 

  54. Nevin, K.P., Holmes, D.E., Woodard, T.L., Hinlein, E.S., Ostendorf, D.W., and Lovley, D.R., Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 1667−1674.

    Article  CAS  PubMed  Google Scholar 

  55. Ortiz-Alvarez, R. and Casamayor, E.O., High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes, Environ. Microbiol. Rep., 2016, vol. 8, pp. 210–217.

    Article  CAS  PubMed  Google Scholar 

  56. Pfennig, N., Anreicherungskulturen für rote und grüne Schwefelbakterien, Zbl. Bakt. Hyg., I. Abt. Orig., 1965, Su-ppl. 1, vols. 179−189, pp. 503−504.

  57. Pfennig, N. and Lippert, K.D., Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien, Archiv. Mikrobiol., 1966, vol. 55, pp. 245–256.

    Article  CAS  Google Scholar 

  58. Pimenov, N.V., Kallistova, A.Yu., Rusanov, I.I., Yusupov, S.K., Montonen, L., Jurgens, G., Münster, U., Nozhevnikova, A.N., and Ivanov, M.V., Methane formation and oxidation in the meromictic oligotrophic Lake Gek-Gel (Azerbaijan), Microbiology (Moscow), 2010, vol. 79, pp. 247−252.

    Article  CAS  Google Scholar 

  59. Preston, D.L., Caine, N., McKnight, D.M., Williams, M.W., Hell, K., Miller, M.P., Hart, S.J., and Johnson, P.T.J., Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure, Geophys. Res. Lett., 2016, vol. 43, pp. 5353–5360.

    Article  Google Scholar 

  60. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 2013, vol. 41, pp. D590−D596.

    Article  CAS  PubMed  Google Scholar 

  61. Reis, P.C.J., Thottathil, S.D., Ruiz-González, C., and Prairie, Y.T., Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates, Environ. Microbiol., 2020, vol. 22, pp. 738−751.

    Article  CAS  PubMed  Google Scholar 

  62. Reis, P.C.J., Thottathil, S.D., and Prairie, Y.T., The role of methanotrophy in the microbial carbon metabolism of temperate lakes, Nat. Commun., 2022, vol. 13, p. 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ren, Y., Yu, M., Low, W.Y., Ruhlman, T.A., Hajrah, N.H., El Omri, A., Alghamdi, M.K., Sabir, M.J., Alhebshi, A.M., Kamli, M.R., Sabir, J.S.M., Theriot, E.C., Jansen, R.K., and Rather, I.A., Nucleotide substitution rates of diatom plastid encoded protein genes are positively correlated with genome architecture, Sci. Rep., 2020, vol. 10, p. 14358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Renaud, G., Stenzel, U., Maricic, T., Wiebe, V., and Kelso, J., deML: robust demultiplexing of Illumina sequences using a likelihood-based approach, Bioinformatics, 2015, vol. 31, pp. 770–772.

    Article  CAS  PubMed  Google Scholar 

  65. Rissanen, A.J., Saarenheimo, J., Tiirola, M., Peura, S., Aalto, S.L., Karvinen, A., and Nykänen, H., Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters, Aquat. Microb. Ecol., 2018, vol. 81, pp. 257–276.

    Article  Google Scholar 

  66. Rosentreter, J.A., Borges, A.V., Deemer, B.R., Holger-son, M.A., Liu, S., Song, C., Melack, J., Raymond, P.A., Duarte, C.M., Allen, G.H., Olefeldt, D., Poulter, B., Battin, T.I., and Eyre, B.D., Half of global methane emissions come from highly variable aquatic ecosystem sources, Nat. Geosci., 2021, vol. 14, pp. 225–230.

    Article  CAS  Google Scholar 

  67. Sanford, R.A., Cole, J.R., and Tiedje, J.M., Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium, Appl. Environ. Microbiol., 2002, vol. 68, pp. 893−900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Savvichev, A.S., Kadnikov, V.V., Rusanov, I.I., Belet-sky, A.V., Krasnova, E.D., Voronov, D.A., Kallistova, A.Yu., Veslopolova, E.F., Zakharova, E.E., Kokryatskaya, N.M., Losyuk, G.N., Demidenko, N.A., Belyaev, N.A., Sigalevich, P.A., Mardanov, A.V., et al., Microbial processes and microbial communities in the water column of the Polar meromictic Lake Bol’shie Khruslomeny at the White sea coast, Front. Microbiol., 2020, vol. 11, p. 1945.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Savvichev, A., Rusanov, I., Dvornikov, Y., Kadnikov, V., Kallistova, A., Veslopolova, E., Chetverova, A., Leibman, M., Sigalevich, P., Pimenov, N., Ravin, N., and Khomutov, A., The water column of the Yamal tundra lakes as a microbial filter preventing methane emission, Biogeosciences, 2021, vol. 18, pp. 2791–2807.

    Article  CAS  Google Scholar 

  70. Sleat, R., Mah, R.A., and Robinson, R., Acetoanaerobium noterae gen. nov., sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2, Int. J. Syst. Bacteriol., 1985, vol. 35, pp. 10−15.

    Article  Google Scholar 

  71. Spring, S., Kampfer, P., Ludwig, W., and Schleifer, K.-H., Polyphasic characterization of the genus Leptothrix: new descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend., System. Appl. Microbiol., 1996, vol. 19, pp. 634−643.

    Article  CAS  Google Scholar 

  72. Storesund, J.E., Lanzèn, A., Nordmann, E.-L., Armo, H.R., Lage, O.M., and Øvreås, L., Planctomycetes as a vital constituent of the microbial communities inhabiting different layers of the meromictic Lake Sælenvannet (Norway), Microorganisms, 2020, vol. 8, p. 1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Su, G., Zopfi, J., Niemann, H., and Lehmann, M.F., Multiple groups of methanotrophic bacteria mediate methane oxidation in anoxic lake sediments, Front. Microbiol., 2022, vol. 13, p. 864630.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Suominen, S., Dombrowski, N., Sinninghe Damsté, J.S., and Villanueva, L., A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulfidic zone, Environ. Microbiol., 2021, vol. 23, pp. 2709−2728.

    Article  CAS  PubMed  Google Scholar 

  75. Tardy, V., Etienne, D., Masclaux, H., Essert, V., Millet, L., Verneaux, V., and Lyautey, E., Spatial distribution of sediment archaeal and bacterial communities relates to the source of organic matter and hypoxia—a biogeographical study on Lake Remoray (France), FEMS Microbiol. Ecol., 2021, vol. 97, p. fiab126.

    Article  CAS  PubMed  Google Scholar 

  76. Toshchakov, S.V., Izotova, A.O., Vinogradova, E.N., Kachmazov, G.S., Tuaeva, A.Y., Abaev, V.T., Evteeva, M.A., Gunitseva, N.M., Korzhenkov, A.A., Elcheninov, A.G., Patrushev, M.V., and Kublanov, I.V., Culture-independent survey of thermophilic microbial communities of the North Caucasus, Biology, 2021, vol. 10, p. 1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Trojan, D., Schreiber, L., Bjerg, J.T., Bøggild, A., Yang, T., Kjeldsen, K.U., and Schramm, A.A., Taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema, Syst. Appl. Microbiol., 2016, vol. 39, pp. 297−306.

    Article  PubMed  PubMed Central  Google Scholar 

  78. van Grinsven, S., Meier, D.V., Michel, A., Han, X., Schubert, C.J., and Lever, M.A., Redox zone and trophic state as drivers of methane-oxidizing bacterial abundance and community structure in lake sediments, Front. Environ. Sci., 2022, vol. 10, p. 857358.

    Article  Google Scholar 

  79. Wang, J., Wei, Z.P., Chu, Y.X., Tian, G., and He, R., Eu-trophic levels and algae growth increase emissions of methane and volatile sulfur compounds from lakes, Environ. Pollut., 2022, vol. 306, p. 119435.

    Article  CAS  PubMed  Google Scholar 

  80. Wolin, E.A., Wolin, M.J., and Wolfe, R.S., Formation of methane by bacterial extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882−2886.

    Article  CAS  PubMed  Google Scholar 

  81. Yamada, T., Sekiguchi, Y., Hanada, S., Imachi, H., Ohashi, A., Harada, H., and Kamagata, Y., Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 1331−1340.

    Article  CAS  PubMed  Google Scholar 

  82. Yang, Y., Chen, J., Tong, T., Li, B., He, T., Liu, Y., and Xie, S., Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes, Sci. Total Environ., 2019, vol. 662, pp. 863−872.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to LLC “MGULAB” (https://www.msulab.ru/) for the chemical analysis of water samples and to Prof. N.V. Ravin (Research Centre of Biotechnology RAS) for critical reading of the manuscript and useful recommendations.

Funding

This research was partially funded by Russian Science Foundation, grant no. 22-14-00038 (activity measurements, enrichments isolation, sequencing of native samples and methanogenic enrichments). Sequencing of the methanotrophic enrichment and bioinformatic analyses were funded by Russian Foundation for Basic Research according to the research project no. 20-04-60190. Field work was supported by State Assignment for the Laboratory of relict microbial communities, Research Centre of Biotechnology RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kallistova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallistova, A.Y., Koval, D.D., Kadnikov, V.V. et al. Methane Cycle in a Littoral Site of a Temperate Freshwater Lake. Microbiology 92, 153–170 (2023). https://doi.org/10.1134/S0026261722602901

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722602901

Keywords:

Navigation