Skip to main content
Log in

Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Although arctic and subarctic lakes are important sources of methane, the emission of which will increase due to the melting of permafrost, the processes related to the methane cycle in such environments are far from being comprehensively understood. Here we studied the microbial communities in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe using high-throughput sequencing of the 16S rRNA and methyl coenzyme M reductase subunit A genes. Hydrogenotrophic methanogens of the order Methanomicrobiales were abundant, both in the water column and in sediments, while the share of acetoclastic Methanosaetaceae decreased with the depth of sediments. Members of the Methanomassiliicoccales order were absent in the water but abundant in the deep sediments. Archaea known to perform anaerobic oxidation of methane were not found. The bacterial component of the microbial community in the bottom water layer included oxygenic (Cyanobacteria) and anoxygenic (Chlorobi) phototrophs, aerobic Type I methanotrophs, methylotrophs, syntrophs, and various organotrophs. In deeper sediments the diversity of the microbial community decreased, and it became dominated by methanogenic archaea and the members of the Bathyarchaeota, Chloroflexi and Deltaproteobacteria. This study shows that the sediments of a subarctic meromictic lake contain a taxonomically and metabolically diverse community potentially capable of complete mineralization of organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862

    CAS  PubMed  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:GB4009

    Google Scholar 

  • Blees J, Niemann H, Wenk CB, Zopfi J, Schubert CJ, Kirf MK, Veronesi ML, Hitz C, Lehmann MF (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–324

    CAS  Google Scholar 

  • Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel J-P, Peyret P, Fonty G, Lehours A-C (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847

    CAS  PubMed  Google Scholar 

  • Borrel G, Lehours AC, Crouzet O, Jézéquel D, Rockne K, Kulczak A, Duffaud E, Joblin K, Fonty G (2012) Stratification of Archaea in the deep sediments of a freshwater meromictic lake: vertical shift from methanogenic to uncultured archaeal lineages. PLoS ONE 7:e43346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, Adam PS, McKay LJ, Chen LX, Sierra-García IN, Sieber CMK, Letourneur Q, Ghozlane A, Andersen GL, Li WJ, Hallam SJ, Muyzer G, de Oliveira VM, Inskeep WP, Banfield JF, Gribaldo S (2019) Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol 4(4):603–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho A, Walter XA, Picazo A, Zopfi J (2017) Photoferrotrophy: remains of an ancient photosynthesis in modern environments. Front Microbiol 8:323

    PubMed  PubMed Central  Google Scholar 

  • Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Philos Trans R Soc Lond B Biol Sci 361:1819–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carnevali PBM, Herbold CW, Hand KP, Priscu JC, Murray AE (2018) Distinct microbial assemblage structure and archaeal diversity in sediments of arctic thermokarst lakes differing in methane sources. Front Microbiol 9:1192

    Google Scholar 

  • Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF (2015) Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 25(6):690–701

    CAS  PubMed  Google Scholar 

  • Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF (2018) Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol 16:629–645

    CAS  PubMed  Google Scholar 

  • Caumette P (1984) Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast). Can J Microbiol 30:273–284

    CAS  Google Scholar 

  • Chan OC, Claus P, Casper P, Ulrich A, Lueders T, Conrad R (2005) Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7:1139–1149

    CAS  PubMed  Google Scholar 

  • Chistoserdova L (2015) Methylotrophs in natural habitats: current insights through metagenomics. Appl Microbiol Biotechnol 99:5763–5779

    CAS  PubMed  Google Scholar 

  • Concheri G, Stevanato P, Zaccone C, Shotyk W, D’Orazio V, Miano T, Piffanelli P, Rizzi V, Ferrandi C, Squartini A (2017) Rapid peat accumulation favours the occurrence of both fen and bog microbial communities within a Mediterranean, free-floating peat island. Sci Rep 7:8511

    PubMed  PubMed Central  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    CAS  PubMed  Google Scholar 

  • Corinne BP, Najwa T, Hélène G, Corentin H, Didier D (2018) New insights into the pelagic microorganisms involved in the methane cycle in the meromictic Lake Pavin through metagenomics. FEMS Microbiol Ecol 95(3):fiy183

    Google Scholar 

  • Crevecoeur S, Vincent WF, Comte J, Matveev A, Lovejoy C (2017) Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds. PLoS ONE 12(11):e0188223

    PubMed  PubMed Central  Google Scholar 

  • Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, González L, Haffner GD, Mucci A, Sundby B, Fowle DA (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9(1):61–78

    CAS  PubMed  Google Scholar 

  • Davis JP, Youssef NH, Elshahed MS (2009) Assessment of the diversity, abundance, and ecological distribution of members of candidate division SR1 reveals a high level of phylogenetic diversity but limited morphotypic diversity. Appl Environ Microbiol 75(12):4139–4148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    CAS  PubMed  Google Scholar 

  • Ershova AA, Vorobyeva TYa, Moreva OYu, Chupakov AV, Zabelina SA, Neverova NV (2015) Hydrochemical and microbiological research of a nitrogen cycle in freshwater meromictic Lake Svetloe (the Arkhangelsk region). Reg Environ Issues 5:44–50 (in Russian)

    Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu MV, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    CAS  PubMed  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350(6259):434–438

    CAS  PubMed  Google Scholar 

  • Farag IF, Davis JP, Youssef NH, Elshahed MS (2014) Global patterns of abundance, diversity and community structure of the Aminicenantes (candidate phylum OP8). PLoS ONE 9(3):e92139

    PubMed  PubMed Central  Google Scholar 

  • Graef C, Hestnes AG, Svenning MM, Frenzel P (2011) The active methanotrophic community in a wetland from the High Arctic. Environ Microbiol Rep 3:466–472

    CAS  PubMed  Google Scholar 

  • Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci USA 108:19657–19661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    CAS  PubMed  Google Scholar 

  • Haggblom MM, Ahn YB, Fennell DE, Kerkhof LJ, Rhee SK (2003) Anaerobic dehalogenation of organohalide contaminants in the marine environment. Adv Appl Microbiol 53:61–84

    CAS  PubMed  Google Scholar 

  • He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB (2012) Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J 6(10):1937–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert SM, Wang F (2016) Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 1(6):16035

    CAS  PubMed  Google Scholar 

  • Hegler F, Posth NR, Jiang J, Kappler A (2008) Physiology of phototrophic iron (II)-oxidizing bacteria: implications for modern and ancient environments. FEMS Microbiol Ecol 66(2):250–260

    CAS  PubMed  Google Scholar 

  • Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a ‘Geospirillum’ sp. strain. Arch Microbiol 172:116–124

    CAS  PubMed  Google Scholar 

  • Imhoff JF (2014) Biology of green sulfur bacteria. eLS. https://doi.org/10.1002/9780470015902.a0000458.pub2

    Article  Google Scholar 

  • Kadnikov VV, Mardanov AV, Beletsky AV, Shubenkova OV, Pogodaeva TV, Zemskaya TI, Ravin NV, Skrybin KG (2012) Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. FEMS Microbiol Ecol 79(2):348–358

    CAS  PubMed  Google Scholar 

  • Kadnikov VV, Mardanov AV, Beletsky AV, Karnachuk OV, Ravin NV (2019) Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle. Extremophiles 23(2):189–200

    CAS  PubMed  Google Scholar 

  • Kallistova A, Kadnikov V, Rusanov I, Kokryatskaya N, Beletsky A, Mardanov A, Savvichev A, Ravin N, Pimenov N (2019) Microbial communities involved in aerobic and anaerobic methane cycling in a meromictic ferruginous subarctic lake. Aquat Microb Ecol 82(1):1–18

    Google Scholar 

  • Kantor RS, Wrighton KC, Handley KM, Sharon I, Hug LA, Castelle CJ, Thomas BC, Banfield JF (2013) Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. MBio 4(5):e00708–e00713

    PubMed  PubMed Central  Google Scholar 

  • Kaster AK, Mayer-Blackwell K, Pasarelli B, Spormann AM (2014) Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin. ISME J 8(9):1831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Quéré CL, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    CAS  Google Scholar 

  • Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1: denitrifying metabolism in M. denitrificans FJG1. Environ Microbiol 17:3219–3232

    CAS  PubMed  Google Scholar 

  • Kittelmann S, Friedrich MW (2008) Novel uncultured Chloroflexi dechlorinate perchloroethene to trans-dichloroethene in tidal flat sediments. Environ Microbiol 10(6):1557–1570

    CAS  PubMed  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    CAS  PubMed  Google Scholar 

  • Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, Schüler D (2012) Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14(7):1709–1721

    CAS  PubMed  Google Scholar 

  • Kuever J (2014) The family syntrophaceae. In: The prokaryotes. Springer, Berlin, pp 281–288

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs KU, Teske AP (2016) Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 18(4):1200–1211

    CAS  PubMed  Google Scholar 

  • Lazar CS, Baker BJ, Seitz KW, Teske AP (2017) Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J 11(5):1118–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YM, Hwang K, Lee JI, Kim M, Hwang CY, Noh HJ, Choi H, Lee HK, Chun J, Hong SG, Shin SC (2018) Genomic insight into the predominance of candidate phylum Atribacteria JS1 lineage in marine sediments. Front Microbiol 9:2909

    PubMed  PubMed Central  Google Scholar 

  • Lidström ME, Somers L (1984) Seasonal study of methane oxidation in Lake Washington. Appl Environ Microbiol 47:1255–1260

    PubMed  PubMed Central  Google Scholar 

  • Llirós M, Casamayor EO, Borrego CM (2008) High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study. FEMS Microbiol Ecol 66:331–342

    PubMed  Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfillb. Microbiology 148(11):3521–3530

    CAS  PubMed  Google Scholar 

  • Ma Y, Liu F, Kong Z, Yin J, Kou W, Wu L, Ge G (2016) The distribution pattern of sediment archaea community of the Poyang Lake, the largest freshwater lake in China. Archaea 2016:9278929

    PubMed  PubMed Central  Google Scholar 

  • Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB (2017) Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci Total Environ 607–608:23–31

    PubMed  Google Scholar 

  • Matheus Carnevali PB, Herbold CW, Hand KP, Priscu JC, Murray AE (2018) Distinct microbial assemblage structure and archaeal diversity in sediments of Arctic thermokarst lakes differing in methane sources. Front Microbiol 9:1192

    PubMed  PubMed Central  Google Scholar 

  • Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(5318):1568–1571

    PubMed  Google Scholar 

  • McKay LJ, Hatzenpichler R, Inskeep WP, Fields MW (2017) Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci Rep 7:7252

    PubMed  PubMed Central  Google Scholar 

  • Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, Schwientek P, Kille P, Parkes RJ, Sass H, Jørgensen BB, Weightman AJ, Liu W-L, Hallam SJ, Tsiamis G, Woyke T, Hedlund BP (2016) Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J 10(2):273–286

    CAS  PubMed  Google Scholar 

  • Ortiz-Alvarez R, Casamayor EO (2016) High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep 8(2):210–217

    CAS  PubMed  Google Scholar 

  • Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr 61:S101–S118

    CAS  Google Scholar 

  • Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Restrepo-Ortiz CX, Casamayor EO (2013) Environmental distribution of two widespread uncultured freshwater Euryarchaeota clades unveiled by specific primers and quantitative PCR. Environ Microbiol Rep 5(6):861–867

    CAS  PubMed  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437

    CAS  PubMed  Google Scholar 

  • Rissanen AJ, Saarenheimo J, Tiirola M, Peura S, Aalto SL, Karvinen A, Nykänen H (2018) Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters. Aquat Microb Ecol 81:257–276

    Google Scholar 

  • Rissanen AJ, Peura S, Mpamah PA, Taipale S, Tiirola M, Biasi C, Mäki A, Nykänen H (2019) Vertical stratification of bacteria and archaea in sediments of a small boreal humic lake. FEMS Microbiol Lett 366(5):fnz044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins SJ, Evans PN, Parks DH, Golding SD, Tyson GW (2016) Genome-centric analysis of microbial populations enriched by hydraulic fracture fluid additives in a coal bed methane production well. Front Microbiol 7:731

    PubMed  PubMed Central  Google Scholar 

  • Ruuskanen MO, St Pierre KA, St Louis VL, Aris-Brosou S, Poulain AJ (2018) Physicochemical drivers of microbial community structure in sediments of Lake Hazen, Nunavut, Canada. Front Microbiol 9:1138

    PubMed  PubMed Central  Google Scholar 

  • Savvichev AS, Kokryatskaya NM, Zabelina SA, Rusanov II, Zakharova EE, Veslopolova EF, Lunina ON, Patutina EO, Bumazhkin BK, Gruzdev DS, Sigalevich PA, Pimenov NV, Kuznetsov BB, Gorlenko VM (2017) Microbial processes of the carbon and sulfur cycles in an ice-covered, iron-rich meromictic Lake Svetloe (Arkhangelsk region, Russia). Environ Microbiol 19(2):659–672

    CAS  PubMed  Google Scholar 

  • Schink B, Zeikus JG (1982) Microbial methanol formation-a major end product of pectin metabolism. Curr Microbiol 4:387–389

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuchmann K, Müller V (2016) Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 82(14):4056–4069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz M, Faber E, Hollerbach A, Schröder HG, Güde H (2001) The methane cycle in the epilimnion of Lake Constance. Fundam Appl Limnol 151:157–176

    CAS  Google Scholar 

  • Sewell HL, Kaster AK, Spormann AM (2017) Homoacetogenesis in deep-sea Chloroflexi, as inferred by single-cell genomics, provides a link to reductive dehalogenation in terrestrial Dehalococcoidetes. MBio 8(6):e02022-17

    PubMed  PubMed Central  Google Scholar 

  • Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74:6663–6671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundh I, Bastviken D, Tranvik LJ (2005) Abundance, activity, and community structure of pelagic methane oxidizing bacteria in temperate lakes. Appl Environ Microbiol 71:6746–6752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang KW, McGinnis DF, Ionescu D, Grossart HP (2016) Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ Sci Technol Lett 3:227–233

    CAS  Google Scholar 

  • Taş N, Van Eekert MH, De Vos WM, Smidt H (2010) The little bacteria that can—diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments. Microb Biotechnol 3(4):389–402

    PubMed  PubMed Central  Google Scholar 

  • Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1(12):16170

    CAS  PubMed  Google Scholar 

  • Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach A-L (1999) Population structure and phylogenetic characterization of marine bentic Archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vuillemin A, Horn F, Friese A, Winkel M, Alawi M, Wagner D, Henny C, Orsi WD, Crowe SA, Kallmeyer J (2018) Metabolic potential of microbial communities from ferruginous sediments. Environ Microbiol 20(12):4297–4313

    CAS  PubMed  Google Scholar 

  • Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSJ, Chan PP, Gollabgir A, Hemp J, Hьgler M, Karr EA, Kцnneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 107(19):8818–8823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter KM, Smith LC, Chapin FS (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans A Math Phys Eng Sci 365:1657–1676

    CAS  PubMed  Google Scholar 

  • Walter XA, Picazo A, Miracle MR, Vicente E, Camacho A, Aragno M, Zopfi J (2014) Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake. Front Microbiol 5:713

    PubMed  PubMed Central  Google Scholar 

  • Wik M, Varner RK, Walter Anthony K, MacIntyre S, Bastviken D (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nat Geosci 9:99–105

    CAS  Google Scholar 

  • Wilson K (2003) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.5

    Google Scholar 

  • Wurzbacher C, Fuchs A, Attermeyer K, Frindte K, Grossart HP, Hupfer M, Casper P, Monaghan MT (2017) Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment. Microbiome 5(1):41

    PubMed  PubMed Central  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56(6):1331–1340

    CAS  PubMed  Google Scholar 

  • Youssef NH, Rinke C, Stepanauskas R, Farag I, Woyke T, Elshahed MS (2015) Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diapherotrites’. ISME J 9(2):447–460

    CAS  PubMed  Google Scholar 

  • Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89(6):670–679

    CAS  PubMed  Google Scholar 

  • Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F (2018) Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA 115(23):6022–6027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeleke J, Lu SL, Wang JG, Huang JX, Li B, Ogram AV, Quan ZX (2013) Methyl coenzyme M reductase A (mcrA) gene-based investigation of methanogens in the mudflat sediments of Yangtze River Estuary, China. Microb Ecol 66:257–267

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank N. Kokryatskaya and A. Chupakov (Federal Research Centre for Integrated Studies of the Arctic) for their help in the sampling of primary material. This work was performed using the scientific equipment of the Core Research Facility “Bioengineering” and was partly supported by the Russian Science Foundation (Grant Number 16-14-10201). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly V. Kadnikov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadnikov, V.V., Savvichev, A.S., Mardanov, A.V. et al. Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe. Antonie van Leeuwenhoek 112, 1801–1814 (2019). https://doi.org/10.1007/s10482-019-01308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01308-1

Keywords

Navigation