Skip to main content
Log in

From genome mining to phenotypic microarrays: Planctomycetes as source for novel bioactive molecules

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Most members of the phylum Planctomycetes share many unusual traits that are unique for bacteria, since they divide independent of FtsZ through asymmetric budding, possess a complex life cycle and comprise a compartmentalized cell plan. Besides their complex cell biological features Planctomycetes are environmentally important and play major roles in global matter fluxes. Such features have been successfully employed in biotechnological applications such as the anaerobic oxidation of ammonium in wastewater treatment plants or the utilization of enzymes for biotechnological processes. However, little is known about planctomycetal secondary metabolites. This is surprising as Planctomycetes have several key features in common with known producers of small bioactive molecules such as Streptomycetes or Myxobacteria: a complex life style and large genome sizes. Planctomycetal genomes with an average size of 6.9 MB appear as tempting targets for drug discovery approaches. To enable the hunt for bioactive molecules from Planctomycetes, we performed a comprehensive genome mining approach employing the antiSMASH secondary metabolite identification pipeline and found 102 candidate genes or clusters within the analyzed 13 genomes. However, as most genes and operons related to secondary metabolite production are exclusively expressed under certain environmental conditions, we optimized Phenotype MicroArray protocols for Rhodopirellula baltica and Planctomyces limnophilus to allow high throughput screening of putative stimulating carbon sources. Our results point towards a previously postulated relationship of Planctomycetes with algae or plants, which secrete compounds that might serve as trigger to stimulate the secondary metabolite production in Planctomycetes. Thus, this study provides the necessary starting point to explore planctomycetal small molecules for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bengtsson MM, Ovreas L (2010) Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol 10:261

    Article  PubMed  Google Scholar 

  • Benjamini YH, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Blond A, Peduzzi J, Goulard C, Chiuchiolo MJ, Barthelemy M, Prigent Y, Salomon RA, Farias RN, Moreno F, Rebuffat S (1999) The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. Eur J Biochem 259:747–755

    Article  PubMed  CAS  Google Scholar 

  • Bochner BR (2009) Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33:191–205

    Article  PubMed  CAS  Google Scholar 

  • Cai HY, Yan ZS, Wang AJ, Krumholz LR, Jiang HL (2013) Analysis of the attached microbial community on mucilaginous cyanobacterial aggregates in the eutrophic lake taihu reveals the importance of Planctomycetes. Microb Ecol 66:73–83

    Article  PubMed  Google Scholar 

  • Cayrou C, Raoult D, Drancourt M (2010) Broad-spectrum antibiotic resistance of Planctomycetes organisms determined by Etest. J Antimicrob Chemother 65:2119–2122

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Weimer P (2001) Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiol 147:21–30

    CAS  Google Scholar 

  • Claesen J, Bibb M (2010) Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc Natl Acad Sci USA 107:16297–16302

    Article  PubMed  CAS  Google Scholar 

  • Clum A, Tindall BJ, Sikorski J, Ivanova N, Mavrommatis K, Lucas S, Glavina T, Del R, Nolan M, Chen F, Tice H, Pitluck S, Cheng JF, Chertkov O, Brettin T, Han C, Detter JC, Kuske C, Bruce D, Goodwin L, Ovchinikova G, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Rohde M, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2009) Complete genome sequence of Pirellula staleyi type strain (ATCC 27377). Stand Genomic Sci 1:308–316

    Article  PubMed  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105

    Article  PubMed  CAS  Google Scholar 

  • Dantas-Santos N, Gomes DL, Costa LS, Cordeiro SL, Costa MS, Trindade ES, Franco CR, Scortecci KC, Leite EL, Rocha HA (2012) Freshwater plants synthesize sulfated polysaccharides: heterogalactans from water hyacinth (Eicchornia crassipes). Int J Mol Sci 13:961–976

    Article  PubMed  CAS  Google Scholar 

  • Dittami SM, Gravot A, Goulitquer S, Rousvoal S, Peters AF, Bouchereau A, Boyen C, Tonon T (2012) Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). Plant J 71:366–377

    PubMed  CAS  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109

    Article  PubMed  CAS  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Sagulenko E (2011) Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 88:8184–8188

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Yokota A, Harayama S (2009) Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov and Phycisphaerae classis nov in the phylum Planctomycetes. J Gen Appl Microbiol 55:267–275

    Article  PubMed  CAS  Google Scholar 

  • Gadler P, Faber K (2007) New enzymes for biotransformations: microbial alkyl sulfatases displaying stereo- and enantioselectivity. Trends Biotechnol 25:83–88

    Article  PubMed  CAS  Google Scholar 

  • Gerber NN, Lechevalier HA (1965) Geosmin, an earthly-smelling substance isolated from actinomycetes. Appl Microbiol 13:935–938

    PubMed  CAS  Google Scholar 

  • Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303

    Article  PubMed  Google Scholar 

  • Göker M, Cleland D, Saunders E, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Beck B, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2011) Complete genome sequence of Isosphaera pallida type strain (IS1B). Stand Genomic Sci 4:63–71

    Article  PubMed  Google Scholar 

  • Gomez-Escribano JP, Bibb MJ (2012) Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol 517:279–300

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA (2010) Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 8:e1000339

    Article  PubMed  Google Scholar 

  • Guo M, Han X, Jin T, Zhou L, Yang J, Li Z, Chen J, Geng B, Zou Y, Wan D, Li D, Dai W, Wang H, Chen Y, Ni P, Fang C, Yang R (2012) Genome sequences of three species in the family Planctomycetaceae. J Bacteriol 194:3740–3741

    Article  PubMed  CAS  Google Scholar 

  • Hempel M, Blume M, Blindow I, Gross EM (2008) Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiol 8:58

    Article  PubMed  Google Scholar 

  • Hira D, Toh H, Migita CT, Okubo H, Nishiyama T, Hattori M, Furukawa K, Fujii T (2012) Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1. FEBS Lett 586:1658–1663

    Article  PubMed  CAS  Google Scholar 

  • Hirsch P, Müller M (1985) Planctomyces limnophilus sp. nov., a stalked and budding bacterium from freshwater. Syst Appl Microbiol 6:276–280

    Article  Google Scholar 

  • Holtkamp AD, Kelly S, Ulber R, Lang S (2009) Fucoidans and fucoidanases—focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol 82:1–11

    Article  PubMed  CAS  Google Scholar 

  • Jermy A (2010) Evolution: bacterial endocytosis uncovered. Nat Rev Microbiol 8:534

    Article  PubMed  CAS  Google Scholar 

  • Jogler C, Waldmann J, Huang X, Jogler M, Glockner FO, Mascher T, Kolter R (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194:6419–6430

    Article  PubMed  CAS  Google Scholar 

  • Kartal B, Kuenen JG, van Loosdrecht MC (2010) Engineering. Sewage treatment with anammox. Science 328:702–703

    Article  PubMed  CAS  Google Scholar 

  • Komiyama K, Otoguro K, Segawa T, Shiomi K, Yang H, Takahashi Y, Hayashi M, Otani T, Omura S (1993) A new antibiotic, cypemycin. Taxonomy, fermentation, isolation and biological characteristics. J Antibiot 46:1666–1671

    Article  PubMed  CAS  Google Scholar 

  • König E, Schlesner H, Hirsch P (1984) Cell-wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138:200–205

    Article  Google Scholar 

  • Kulichevskaya IS, Ivanova AO, Baulina OI, Bodelier PL, Damste JS, Dedysh SN (2008) Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol 58:1186–1193

    Article  PubMed  CAS  Google Scholar 

  • Kulichevskaya IS, Baulina OI, Bodelier PL, Rijpstra WI, Damste JS, Dedysh SN (2009) Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. Int J Syst Evol Microbiol 59:357–364

    Article  PubMed  CAS  Google Scholar 

  • Kwok JC, Warren P, Fawcett JW (2012) Chondroitin sulfate: a key molecule in the brain matrix. Int J Biochem Cell Biol 44:582–586

    Article  PubMed  CAS  Google Scholar 

  • Labutti K, Sikorski J, Schneider S, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Tindall BJ, Rohde M, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Complete genome sequence of Planctomyces limnophilus type strain (Mu 290). Stand Genomic Sci 3:47–56

    Article  PubMed  Google Scholar 

  • Lage OM, Bondoso J (2011) Planctomycetes diversity associated with macroalgae. FEMS Microbiol Ecol 78:366–375

    Article  PubMed  CAS  Google Scholar 

  • Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiol 143:739–748

    Article  CAS  Google Scholar 

  • Liu S, Yang F, Gong Z, Meng F, Chen H, Xue Y, Furukawa K (2008) Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresour Technol 99:6817–6825

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne TG, Sagulenko E, Webb RI, Lee KC, Franke J, Devos DP, Nouwens A, Carroll BJ, Fuerst JA (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 107:12883–12888

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa H, Tanaka Y, Tamaki H, Kamagata Y, Mori K (2010) Culture-dependent and independent analyses of the microbial communities inhabiting the giant duckweed (Spirodela polyrrhiza) rhizoplane and isolation of a variety of rarely cultivated organisms within the phylum Verrucomicrobia. Microbes Environ 25:302–308

    Article  PubMed  Google Scholar 

  • McCormick JR, Flardh K (2012) Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36:206–231

    Article  PubMed  CAS  Google Scholar 

  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(Web Server):W339–W346

    Article  PubMed  CAS  Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytol 188:67–81

    Article  PubMed  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  PubMed  CAS  Google Scholar 

  • Nikolouli K, Mossialos D (2012) Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol Lett 34:1393–1403

    Article  PubMed  CAS  Google Scholar 

  • Pastor JM, Salvador M, Argandona M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Canovas M (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801

    Article  PubMed  CAS  Google Scholar 

  • Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277

    Article  PubMed  CAS  Google Scholar 

  • Pizzetti I, Gobet A, Fuchs BM, Amann R, Fazi S (2011a) Abundance and diversity of Planctomycetes in a Tyrrhenian coastal system of central Italy. Aquat Microb Ecol 65:129–141

    Article  Google Scholar 

  • Pizzetti I, Fuchs BM, Gerdts G, Wichels A, Wiltshire KH, Amann R (2011b) Temporal variability of coastal Planctomycetes clades at Kabeltonne station, North Sea. Appl Environ Microbiol 77:5009–5017

    Article  PubMed  CAS  Google Scholar 

  • Popper ZA, Michel G, Herve C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590

    Article  PubMed  CAS  Google Scholar 

  • Read SM, Currie G, Bacic A (1996) Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry. Carbohydr Res 281:187–201

    Article  PubMed  CAS  Google Scholar 

  • Rebuffat S (2012) Microcins in action: amazing defence strategies of Enterobacteria. Biochem Soc Trans 40:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Reed RH, Davison IR, Chudek JA, Foster R (1985) The osmotic role of mannitol in the Phaeophyta: an appraisal. Phycologia 24:35–47

    Article  Google Scholar 

  • Romero D, Traxler MF, Lopez D, Kolter R (2011) Antibiotics as signal molecules. Chem Rev 111:5492–5505

    Article  PubMed  CAS  Google Scholar 

  • Rosengren KJ, Craik DJ (2009) How bugs make lassos. Chem Biol 16:1211–1212

    Article  PubMed  CAS  Google Scholar 

  • Salerno GL, Curatti L (2003) Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci 8:63–69

    Article  PubMed  CAS  Google Scholar 

  • Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP (2010) The compartmentalized bacteria of the PlanctomycetesVerrucomicrobiaChlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e1000281

    Article  PubMed  Google Scholar 

  • Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj IW, Devos DP (2013) Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLoS Biol 11:e1001565

    Article  PubMed  CAS  Google Scholar 

  • Schlesner H, Rensmann C, Tindall BJ, Gade D, Rabus R, Pfeiffer S, Hirsch P (2004) Taxonomic heterogeneity within the Planctomycetales as derived by DNA–DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol 54:1567–1580

    Article  PubMed  CAS  Google Scholar 

  • Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk HP, Pfeiffer F, Oesterhelt D, Kunte HJ (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol 13:1973–1994

    Article  PubMed  CAS  Google Scholar 

  • Seyedsayamdost MR, Case RJ, Kolter R, Clardy J (2011) The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 3:331–335

    Article  PubMed  CAS  Google Scholar 

  • Speth DR, van Teeseling MC, Jetten MS (2012) Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in Planctomycetes and Verrucomicrobia. Front Microbiol 3:304

    PubMed  Google Scholar 

  • Straight PD, Kolter R (2009) Interspecies chemical communication in bacterial development. Annu Rev Microbiol 63:99–118

    Article  PubMed  CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MS (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  PubMed  CAS  Google Scholar 

  • Vaas LA, Sikorski J, Michael V, Goker M, Klenk HP (2012) Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 7:e34846

    Article  PubMed  CAS  Google Scholar 

  • Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk HP, Goker M (2013) opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 29(14):1823–1824

    Article  PubMed  CAS  Google Scholar 

  • Valdes-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814

    PubMed  CAS  Google Scholar 

  • van Niftrik L, van Helden M, Kirchen S, van Donselaar EG, Harhangi HR, Webb RI, Fuerst JA, Op den Camp HJ, Jetten MS, Strous M (2010) Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium ‘Candidatus Kuenenia stuttgartiensis’. Mol Microbiol 77:701–715

    Article  PubMed  Google Scholar 

  • van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333

    Article  PubMed  Google Scholar 

  • Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249

    Article  PubMed  CAS  Google Scholar 

  • Wallner SR, Bauer M, Wurdemann C, Wecker P, Glockner FO, Faber K (2005) Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration. Angew Chem Int Ed Engl 44:6381–6384

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41:4–10

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Song M (2011) Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic programming. R J 3:29–33

    Google Scholar 

  • Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, Glockner FO, Harder J (2012) Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Mar Genomics. doi:10.1016/j.margen.2012.12.001

    PubMed  Google Scholar 

  • Wenzel SC, Müller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606

    Article  PubMed  CAS  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  • Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501

    Article  PubMed  CAS  Google Scholar 

  • Wilson KA, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125:12475–12483

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Cane DE, Ikeda H (2012) Diversity and analysis of bacterial terpene synthases. Methods Enzymol 515:123–162

    Article  PubMed  CAS  Google Scholar 

  • Zubia M, Payri C, Deslandes E (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol 20:1033–1043

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anja Stieler and Victoria Michael for their skillful technical assistance. In addition, we thank Boyke Bunk for his bioinformatic support and Petra Henke for her critical review of the manuscript. This work was supported by the EU Framework Program 7: MICROME Collaborative Project [222886-2] and Marie Curie IOF Program (CoGniSePlanctomyces).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jogler.

Additional information

Olga Jeske and Mareike Jogler contributed equally to this paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeske, O., Jogler, M., Petersen, J. et al. From genome mining to phenotypic microarrays: Planctomycetes as source for novel bioactive molecules. Antonie van Leeuwenhoek 104, 551–567 (2013). https://doi.org/10.1007/s10482-013-0007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0007-1

Keywords

Navigation