Skip to main content
Log in

Characterization of Bacteria Capable of Degrading Lindane (γ-Hexachlorocyclohexane) and Study the Dynamics of Biodegradation

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Nine bacterial isolates were recovered by enrichment culture technique and confirmed for lindane (γ-hexachlorocyclohexane, γ-HCH) degradation. Out of these, two pure cultures, Cal-11e and Tr-12d, were selected based on the data on their lindane tolerance and biodegradation ability. Chloride ions mineralization during lindane degradation by the isolates Cal-11e and Tr-12d was 0.43 and 0.45 mg/mL, respectively. After 15 days, lindane degradation by these strains was 60.0 and 64.77%, respectively. Gas chromatography mass-spectroscopy (GC-MS) analysis indicated the presence of γ-pentachlorocyclohexene (γ-PCCH) as the primary degradation metabolite. Physiological, morphological, and biochemical characterization of the isolates was carried out. Half-life (T1/2) of lindane degradation by Cal-11e and Tr-12d isolates was 1.45 and 1.50 days, respectively. The 16S rRNA gene sequencing revealed that the isolates Cal-11e and Tr-12d were closely related to Planomicrobium sp. and Planococcus sp., with 99 and 97% homology, respectively. Further, the 16S rRNA gene sequences pertaining to these two strains were submitted to National Center for Biotechnology Information (NCBI) GenBank, and strains were characterized as Planomicrobium sp. strain Cal-11e and Planococcus sp. strain Tr-12d. Therefore, the two bacterial species involved in γ-HCH degradation can be explored in future biodegradation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abhilash, P.C., Srivastava, S., and Singh, N., Comparative bioremediation potential of four rhizospheric microbial species against Lindane, Chemosphere, 2011, vol. 82, no. 1, pp. 56–63. https://doi.org/10.1016/j.chemosphere.2010.10.009, Epub 2010. Nov. 1.

  2. Adithya, S., Jayaraman, R.S, Krishnan, A., Malolan, R., Gopinath, K.P., Arun, J., Kim, W., and Govarthanan, M., A critical review on the formation, fate and degradation of the persistent organic pollutant hexachlorocyclohexane in water systems and waste streams, Chemosphere, 2021, vol. 271, p. 129 866. https://doi.org/10.1016/j.chemosphere.2021.129866

    Article  CAS  Google Scholar 

  3. Ahmad, K.S., Remedial potential of bacterial and fungal strains (Bacillus subtilis, Aspergillus niger, Aspergillus flavus and Penicillium chrysogenum) against organochlorine insecticide Endosulfan, Folia Microbiol., vol. 65, no. 5, pp. 801–810. https://doi.org/10.1007/s12223-020-00792-7

  4. Aparicio., J.D., Garcia-Velasco, N., Urionabarrenetxea, E., Soto, M., Alvarez, A., and Polti, M.A., Evaluation of the effectiveness of a bioremediation process in experimental soils polluted with chromium and Lindane, Ecotoxicol. Environ. Saf., 2019, vol. 181, pp. 255–263.

  5. ATSDR Agency for Toxic Substances and Disease Registry, Hexachlorocyclohexane (HCH). Atlanta, United States, 2011. Bajaja, S., Sagara, S., Khareb, S., and Singh, D.K., Biodegradation of γ-hexachlorocyclohexane (Lindane) by halophilic bacterium Chromohalobacter sp. LD2 isolated from HCH dumpsite, Int. Biodet. Biodegrad., 2017, vol. 122, pp. 23–28.

    Google Scholar 

  6. Bellinaso, M.D.L., Greer, C.W., Perlba, M.C., and Heriques, J.A.P., Biodegradation of herbicide trifluralin by bacteria isolated from soil, FEMS Microbiol. Ecol., 2003, vol. 43, pp. 191–194. https://doi.org/10.1111/j.1574-6941.2003.tb01058.x

  7. Bergey’s Manual of Systematic Bacteriology, Springer, 2012, vol. 5.

  8. Bidlan, R., Afsar, M., and Manonmani, H.K., Bioremediation of HCH-contaminated soil: elimination of inhibitory effects of the insecticide on radish and green gram seed germination, Chemosphere, 2004, vol. 56, pp. 803–811. https://doi.org/10.1016/j.chemosphere.2004.01.015

  9. Caicedo, P., Schroder, A., Ulrich, N., Schroter, U., Paschke, A., and Schuurmann, G., Determination of lindane leachability in soil–biosolid systems and its bioavailability in wheat plants, Chemosphere, 2011, vol. 84, pp. 397–402. https://doi.org/10.1016/j.chemosphere.2011.03.070

  10. Cappuccino, J. and Sherman, N., Microbiology: A Laboratory Manual, NY: Benjamin-Cummings, 2019.

    Google Scholar 

  11. Casanova, A., Cabrera, S., Díaz-Ruiz, G., Hernández, S., Wacher, C., Zubillaga, M., and Ortíz, I., Evaluation of endosulfan degradation capacity by six pure strains isolated from a horticulture soil, Folia Microbiol., 2021, vol. 66, no. 6, pp. 973–981. https://doi.org/10.1007/s12223-021-00899-5

    Article  CAS  Google Scholar 

  12. Chang, T.P., Wu, C.Y., and Juang, R.S., Improved dynamic analysis on cell growth with substrate inhibition using two-phase models, Biochem. Eng. J., 2009, vol. 25, pp. 209–217.

    Article  Google Scholar 

  13. Datta, J., Maiti, A.K., Modak, D.P., Chakrabartty, P.K., Bhattacharyya, P., and Ray, P.K., Metabolism of c-hexachlorocyclohexane by Arthrobacter citreus strain BI-100: identification of metabolites, J. Gen. Appl. Microbiol., 2000, vol. 46, pp. 59–67. https://doi.org/10.2323/jgam.46.59.

  14. De Paolis, M.R., Lippi, D., Guerriero, E., Polcaro, C.M., and Donati, E., Biodegradation of a-, b-, and c-Hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi, Appl. Biochem. Biotech., 2013, vol. 170, pp. 514–524. https://doi.org/10.1007/s12010-013-0147-9

  15. Dykaar, B.B. and Kitanidis, P.K., Macrotransport of a biologically reacting solute through porous media, Water Resour. Res., 1996, vol. 32, pp. 307–320.

    Article  CAS  Google Scholar 

  16. Elcey C.D. and Kunhi, A.A.M., Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation, J. Agric. Food Chem., 2010, vol. 58, pp. 1046–1054. https://doi.org/10.1021/jf9038259

    Article  CAS  PubMed  Google Scholar 

  17. Fuentes, M.S., Benimeli, C.S., Cuozzo, S.A., and Amoroso, M.J., Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides, Int. Biodeterior. Biodegrad., 2010, vol. 64, pp. 434–441.

    Article  CAS  Google Scholar 

  18. Garcia Lara, B., Wrobel, K., Corrales Escobosa, A.R., Serrano Torres, O., Enciso Donis, I., and Wrobel, K., Mass spectrometry-based identification of bacteria isolated from industrially contaminated site in Salamanca (Mexico) and evaluation of their potential for DDT degradation, Folia Microbiol., 2021, vol. 66, no. 3, pp. 355–369. https://doi.org/10.1007/s12223-020-00848-8

    Article  CAS  Google Scholar 

  19. Getz, M.E. and Watts, R.R. Application of 4-(p-nitrobenzyl) pyridine as a rapid quantitative reagent for pesticides, J. Asso. Agricult. Chemists., 1964, vol. 47, pp. 1094–1096.

    CAS  Google Scholar 

  20. Githinji, I.N., Screening and isolation of γ-hexachlorocyclohexane degrading bacteria from contaminated soil in Kenya, M.Sc. Thesis, Center for Biotechnology & Bioinformatics, University of Nairobi, Kenya, 2015.

  21. Greenberg, A.E., Clesceri, L.S., and Eaton, A.D., Standard Methods for the Examination of Water and Waste Water, Waghington: APHA, 1992, 18th ed.

  22. Guillén-Jiménez, F.M., Cristiani-Urbina, E., Cancino-Díaz, J.C., Flores-Moreno, J.L., and Barragán-Huerta, B.E., Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: kinetic study and identification of metabolites, Int. Biodet. Biodegrad., 2012, vol. 74, pp. 36–47. https://doi.org/10.1016/j.ibiod.2012.04.020

    Article  CAS  Google Scholar 

  23. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids Symp. Series, 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  24. Holloway, P., Trevors, J.T., and Lee, H., A colorimetric assay for detecting haloalkane dehalogenase activity, J. Microbiol. Methods, 1998, vol. 32, pp. 31–36. https://doi.org/10.1016/S0167-7012(98)00008-6

    Article  CAS  Google Scholar 

  25. Imai, R., Nagata, Y., Senoo, K., Wada, H., Fukuda, M., Takagi, M., and Yano, K., Dehydrochlorination of γ-hexachlorocyclohexane (γ-BHC) by γ-BHC assimilating Pseudomonas paucimobilis, Agric. Biol. Chem., 1998, vol. 53, pp. 2015–2017.

    Google Scholar 

  26. Jain, H.K., Pandey, S.Y., Agnihotri, N.P., and Dhawan, R.S., Rapid estimation of insecticides, Indian J. Entomol., 1974, vol. 36, pp. 145–148.

  27. Jing, H.J., Koutavarapu, R., Lee, S., Kim, J.H., Choi, H.C., and Choi, M.Y., Enhanced photocatalytic degradation of lindane using metal-semiconductor Zn@ZnO and ZnO/Ag nanostructures, J. Environ. Sci. (China), 2018, vol. 74, pp. 107–115. https://doi.org/10.1016/j.jes.2018.02.014

  28. Khan, S., Han, C., Khan, H.M., Boccelli, D.L., Nadagouda, M.N., and Dionysiou, D.D., Efficient degradation of lindane by visible and simulated solar light-assisted STiO2/peroxymonosulfate process: kinetics and mechanistic investigations, J. Mol. Catal. Chem., 2017, vol. 428, p. 9e16.

  29. Kumar, D. and Pannu, R., Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review, Bioresour. Bioprocess., 2019, vol. 5, p. 29. https://doi.org/10.1186/s40643-018-0213-9

    Article  Google Scholar 

  30. Kumar, D., Kumar, A., and Sharma, J., Degradation study of lindane by novel strains Kocuria sp. DAB-1Y and Staphylococcus sp. DAB-1W, Bioresour. Bioprocess., 2016c, vol. 3, pp. 53–60.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kumar, S., Bidlan, R., and Sharma, J.G., Degradation of lindane by sludge enriched on mixed commercial formulations of organophosphate and pyrethroid pesticides, Int. J. Curr. Microbiol. App. Sci., 2016a, vol. 5, no. 5, pp. 138–152.

    Article  CAS  Google Scholar 

  32. Kumar, S., Stecher, G., and Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016b, vol. 33, pp. 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, Y.F., McMillan, A., and Scholtz, T.M., Global HCH usages with 1 × 10 longitude/latitude resolution, Environ. Sci. Technol., 1996, vol. 30, pp. 3525–3533.

    Article  Google Scholar 

  34. Loredana, S., Graziano, P., Antonio, M., Carlotta, N.M., Caterina, L., Maria, A.A., Carlo, Z., Corriero Giuseppe, C., and Pietro, A., Lindane bioremediation capability of bacteria associated with the demosponge Hymeniacidon perlevis, Marine Drugs, 2017, vol. 15, no. 108, pp. 1–15.

    Article  Google Scholar 

  35. Manickam, N., Misra, R., and Mayilraj, S., A novel pathway for the biodegradation of c-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12, J. Appl. Microbiol., 2007, vol. 102, pp. 1468–1478.

    Article  CAS  PubMed  Google Scholar 

  36. Manickam, N., Reddy, M.K., Saini, H.S., and Shanker, R., Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in c-HCH degradation, J. Appl. Microbiol., 2008, vol. 104, pp. 952–960.

    Article  CAS  PubMed  Google Scholar 

  37. Mohapatra, S. and Pandey, M., Biodegradation of hexachlorocyclohexane (HCH) isomers by white rot fungus, Pleurotus florida, J. Bioremed. Biodegrad., 2015, vol. 6, pp. 280–286.

    Article  Google Scholar 

  38. Nagata, Y., Endo, R., Ito, M., Ohtsubo, Y., Tsuda, M., Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis, Appl. Microbiol. Biotechnol., 2007, vol. 76, pp. 741–752. https://doi.org/10.1007/s00253-007-1066-x

    Article  CAS  PubMed  Google Scholar 

  39. Nagata, Y., Hatta, T., Imai, R., Kimbara, K., Fukuda., M., Yano, K., and Takagi, M., Purification and characterizacion of γ-hexachlorocyclohexane (Lindane) dehydrochlorinase (LinA) from Pseudomonas paucimobilis, Biosci., Biotechnol. Biochem., 1996a, vol. 57, pp. 1582–1583.

    Article  Google Scholar 

  40. Nagpal, V., Srinivasan, M.C., and Paknikar, K.M., Biodegradation of c-hexachlorocyclohexane (Lindane) by a non-white-rot fungus Conidiobolus 03-1-56 isolated from litter, Indian J. Microbiol. 2008, vol. 48, pp. 134–141.

  41. Ohisa, N., Yamaguchi, M., and Kurihara, N., Lindane degradation by cell-free extracts of Clostridium rectum, Arch. Microbiol., 1980, vol. 125, pp. 221–225. https://doi.org/10.1007/BF00446880

    Article  CAS  PubMed  Google Scholar 

  42. Okeke, B.C., Siddique, T., Arbestain, M.C., and Frankenberger, W.T., Biodegradation of c-hexachlorocyclohexane (Lindane) and a-hexachlorocyclohexane in water and a soil slurry by a Pandoraea species, J. Agricult. Food Chem., 2002, vol. 50, pp. 2548–2555. https://doi.org/10.1021/jf011422a

    Article  CAS  Google Scholar 

  43. Owalude, S.O., Odebunmi, E.O., and Babalola, K.O., Assessment of physicochemical parameters and heavy metals in effluents from Odogunyan industrial estate, Lagos, Nigeria, FUDMA J. Sci., 2020, vol. 4, no. 4, pp. 223–230. http://doi.org/10.33003/fjs-2020-0404-508

  44. Pannu, R. and Kumar, D., Biodegradation study of ϒ- hexachlorocyclohexane using selected bacteria isolated from agricultural soil, Afr. J. Microbiol. Res., 2014, vol. 8, no. 36, pp. 3335–3346.

    Article  Google Scholar 

  45. Pannu, R. and Kumar, D., Process optimization of γ- Hexachlorocyclohexane degradation using three novel Bacillus sp. strains, Biocat. Agri. Biotech., 2017, vol. 11, pp. 97–107. https://doi.org/10.1016/j.bcab.2017.06.009

    Article  Google Scholar 

  46. Pesce, S.F. and Wunderlin, D.A., Biodegradation of Lindane by a native bacterial consortium isolated from contaminated river sediment, Int. Biodet. Biodegrad., 2004, vol. 54, pp. 255–260. https://doi.org/10.1016/j.ibiod.2004.02.003

  47. Pesce, S.F., Cazenave, J., Monferrán, M.V., Frede, S., and Wunderlin, D.A., Integrated survey on toxic effects of lindane on neotropical fish: Corydoras paleatus and Jenynsia multidentata, Environ. Poll., 2008, vol. 156, pp. 775–783. https://doi.org/10.1016/j.envpol.2008.06.016

  48. Phillips, T.M., Lee, H., Trevors, J.T., and Seech, A.G., Full-scale in situ bioremediation of hexachlorocyclohexane-contaminated soil, J. Chem. Technol. Biotech., 2005, vol. 81, pp. 289–298. https://doi.org/10.1007/s10532-004-2413-6

  49. Phillips, T.M., Seech, A.G., Lee, H., and Trevors, J.T., Biodegradation of hexachlorocyclohexane (HCH) by microorganisms, Biodegradation, 2005, vol. 16, pp. 363–392. https://doi.org/10.1007/s10532-004-2413-6

    Article  CAS  PubMed  Google Scholar 

  50. Phillips, T.M., Seech, A.G., Lee, H., and Trevors, J.T., Colorimetric assay for lindane dechlorination by bacteria, J. Microbiol Methods, 2001, vol. 47, no. 2, pp. 181–188. https://doi.org/10.1016/s0167-7012(01)00299-8

    Article  CAS  PubMed  Google Scholar 

  51. Puentes Jácome, L.A., Lomheim, L., Gaspard, S., and Edwards, E.A., Biodegradation of Lindane (γ-hexachlorocyclohexane) to nontoxic end products by sequential treatment with three mixed anaerobic microbial cultures, Environ. Sci. Technol., 2021, vol. 55, no. 5, pp. 2968–2979. https://doi.org/10.1021/acs.est.0c07221

    Article  CAS  PubMed  Google Scholar 

  52. Quintero, J.C., Moreira, M.T., Feijoo, G., and Lema, J.M., Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems, Chemosphere, 2005, vol. 61, pp. 528–536. https://doi.org/10.1016/j.chemosphere.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  53. Rigas, F., Papadopoulou, K., Philippoussis, A., Papadopoulou, M., and Chatzipavlidis, J., Bioremediation of Lindane contaminated soil by Pleurotus ostreatus in non-sterile conditions using multilevel factorial design, Water Air Soil Poll., 2009, vol. 197, pp. 121–129. https://doi.org/10.1007/s11270-008-9795-8

    Article  CAS  Google Scholar 

  54. Sahoo, B., Ningthoujam, R., and Chaudhuri, S., Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits, Int. Microbiol., 2019, vol. 22, pp. 155–167. https://doi.org/10.1007/s10123-018-00037-1

    Article  CAS  PubMed  Google Scholar 

  55. Sahu, S.K., Patnaik, K.K., Sharmila, M., and Sethunnathan, N., Degradation of alpha-, beta-, and γ-Hexachlorocyclohexane by a soil bacterium under aerobic conditions, Appl. Environ. Microbiol., 1990, vol. 56, pp. 3620–3622. https://doi.org/10.1128/aem.56.11.3620-3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Salam, J.A. and Das, N., Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway, World J. Microbiol. Biotechnol., 2014, vol. 30, pp. 1301–1313. https://doi.org/10.1007/s11274-013-1551-6

    Article  CAS  PubMed  Google Scholar 

  57. Salem, J.A. and Das, N., Remediation of Lindane from environment-an overview, Int. J. Adv. Biol. Res., 2012, vol. 2, pp. 9–15.

  58. Salem, J.A., Lakshmi, V., Das, D., and Das, N., Biodegradation of Lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil, World J. Micr-obiol. Biotechnol., 2013, vol. 29, no. 3, pp. 475–487. https://doi.org/10.1007/s11274-012-1201-4

    Article  CAS  Google Scholar 

  59. Sineli, P.E., Tortella, G., Dávila Costa, J.S., and Cuozzo, S.A., Evidence of α-, β- and lindane mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7, World J. Microbiol. Biotechnol., 2016, vol. 32, pp. 81–90. https://doi.org/10.1007/s11274-016-2037-0

    Article  CAS  PubMed  Google Scholar 

  60. Singh, T. and Singh, D.K., Rhizospheric Microbacterium sp. P27 showing potential of lindane degradation and plant growth promoting traits, Curr. Microbiol., 2019, vol. 76, no. 7, pp. 888–895. https://doi.org/10.1007/s00284-019-01703-x

    Article  CAS  PubMed  Google Scholar 

  61. Sinkkonen, S. and Paasivirta, J., Polychlorinated organic compounds in the Arctic cod liver: trends and profiles, Chemosphere, 2000, vol. 40, pp. 619‒626. https://doi.org/10.1016/s0045-6535(99)00309-4

    Article  CAS  PubMed  Google Scholar 

  62. Tamura, K., Nei, M., and Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method, Proc. Natl. Acad. Sci. U. S. A., vol. 101, pp. 11 030–11 035. https://doi.org/10.1073/pnas.0404206101

  63. Thomas, J.C., Berger, F., Jacquier, M., Bernillon, D., Baud-Grasset, F., Truffaut, N., Normand, P., Vogel, T.M., and Simonet, P., Isolation and characterization of a novel c-hexachlorocyclohexane- degrading bacterium, J. Bacteriol., 1996, vol. 178, pp. 6049–6055.https://doi.org/10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. USEPA, Addendum to the 2002 Lindane Reregistration Eligibility Decision (RED), 2006. https://archive. epa.gov/pesticides/reregistration/web/pdf/lindane_ red_addendum.pdf.

  65. Usmani, Z., Kulp, M., and Lukk, T., Bioremediation of Lindane contaminated soil: exploring the potential of actinobacterial strains, Chemosphere, 2021, vol. 278, pp. 130 468. https://doi.org/10.1016/j.chemosphere.2021.130468

    Article  CAS  Google Scholar 

  66. Varjani, S.J., Gnansounou, E., and Pandey, A., Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms, Chemosphere, 2017, vol. 188, p. 280–291. https://doi.org/10.1016/j.chemosphere.2017.09.005.v

  67. Varjani, S., Rakholiya, P., Ng, H.Y., You, S., Jose, A., and Teixeira, J.A., Microbial degradation of dyes: an overview, Biores. Technol., 2020, vol. 314. https://doi.org/10.1016/j.biortech.2020.123728

  68. Wu, S.C., Chang, B.S., and Li, Y.Y., Effect of the coexistence of endosulfan on the lindane biodegradation by Novosphingobium barchaimii and microbial enrichment cultures, Chemosphere, 2022, vol. 297, p. 134 063. https://doi.org/10.1016/j.chemosphere.2022.134063

    Article  CAS  Google Scholar 

  69. Wu, S.C., Gao, J.K., and Chang, B.S., Isolation of Lindane- and endosulfan-degrading bacteria and dominance analysis in the microbial communities by culture-dependent and independent methods, Microbiol. Res., 2021, vol. 251, p. 126 817. https://doi.org/10.1016/j.micres.2021.126817

    Article  CAS  Google Scholar 

  70. Yuan, J., Shentu, J., Ma, B., Lu, Z., Luo, Y., Xu, J., and He, Y., Microbial and abiotic factors of flooded soil that affect redox biodegradation of Lindane, Sci. Total Environ., 2021, vol. 780, p. 146 606. https://doi.org/10.1016/j.scitotenv.2021.146606

    Article  CAS  Google Scholar 

  71. Zhang, G., Selvam, A., and Wong, J.W.C., Rapid degradation of lindane (c-hexachlorocyclohexane) at low temperature by Sphingobium strains, Int. Biodet. Biodegrad., 2012, vol. 65, pp. 612–618.

    Article  Google Scholar 

  72. Zhang, H., Wan, H., Song, L., Jiang, H., Wang, H., and Qiao, C., Development of an autofluorescent Pseudomonas nitroreducens with dehydrochlorinase activity for efficient mineralization of γ-hexachlorocyclohexane (Lindane), J. Biotechnol., 2010, vol. 3, no. 1, pp. 114–119.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131039 Sonipat, India, for providing the necessary facilities to carry out this research. R. Pannu was PhD scholar in this research, and Dr. D. Kumar has supervised the research. The authors also wish to thank University Science Instrumentation Centre, AIRF, Jawaharlal Nehru University, New Delhi, India, for GC-MS analysis, and Yaazh Xenomics, Coimbatore, India for 16S rRNA gene sequencing.

Funding

No external funding was received to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kumar.

Ethics declarations

The authors declare that they have no conflicts of interest. Тhis article does not contain any studies involving animals or human participants performed by any of the authors.

Consent to participate. Both authors were involved in the manuscript.

Consent for publication. The authors have consent for the publication and approved the final draft of the manuscript.

Availability of data and material: The 16S rRNA gene sequence data of the two lindane degrading strains. Planomicrobium sp. strain Cal-11e, and Planococcus sp. strain Tr-12d were deposited to National Center for Biotechnology Information (NCBI) GenBank with accession number(s), MF599364 and MF599366, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pannu, R., Kumar, D. Characterization of Bacteria Capable of Degrading Lindane (γ-Hexachlorocyclohexane) and Study the Dynamics of Biodegradation. Microbiology 92, 434–447 (2023). https://doi.org/10.1134/S0026261722602469

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722602469

Keywords:

Navigation