Skip to main content
Log in

Cascade Biotransformation of Phytosterol to Testosterone by Mycolicibacterium neoaurum VKM Ас-1815D and Nocardioides simplex VKM Ас-2033D Strains

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

New methods for testosterone production from phytosterol were developed based on its cascade two-stage transformation by actinobacteria Mycolicibacterium neoaurum VKM Ac-1815D and Nocardioides simplex VKM Ac-2033D. Efficient oxidation of the phytosterol side chain by M. neoaurum resulted in formation of the main and side products: androst-4-en-3,20-dione (AD) and androsta-1,4-dien-3,20-dione (ADD), respectively, which were subsequently converted to testosterone by N. simplex. The latter reaction was reversible and catalyzed by the membrane-associated 17β-hydroxysteroid dehydrogenase (17β-HSD) capable of both oxidation and reduction of androstendione at C17. Addition of glucose and limited aeration were found to be the key factors providing for a shift of the 17β-HSD activity towards reduction in whole N. simplex cells. Testosterone production from phytosterol was realized using two approaches: (i) based on M. neoaurum cells inactivation after phytosterol conversion and application of the resting N. simplex biomass for androstenedione reduction and (ii) based on sequential application of the two living cultures. Under optimized conditions, the total yield of testosterone from phytosterol (10 g/L) reached 53 mol %. The results exceeded those reported so far for cascade phytosterol bioconversion to testosterone and may be used as a basis for development of new biotechnologies for production of the valuable steroid compounds, intermediates in the synthesis of modern medical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bragin, E.Y., Shtratnikova, V.Y., Dovbnya, D.V., Schelkunov, M.I., Pekov, Y.A., Malakho, S.G., Egoro-va, O.V., Ivashina, T.V., Sokolov, S.L., Ashapkin, V.V., and Donova, M.V., Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains, J. Steroid Biochem. Mol. Biol., 2013, vol. 138, pp. 41–53.

    Article  CAS  Google Scholar 

  2. Donova, M.V., Dovbnya, D.V., Sukhodolskaya, G.V., Khomutov, S.M., Nikolayeva, V.M., Kwon, I., and Han K., Microbial conversion of sterol-containing soybean oil production waste, J. Chem. Technol. Biotechnol., 2005a, vol. 80, pp. 155–160.

    Google Scholar 

  3. Donova, M.V., Egorova, O.V., and Nikolayeva, V.M., Steroid 17β-reduction by microorganism—a review, Process Biochem., 2005b, vol. 40, pp. 2253–2262.

    Article  CAS  Google Scholar 

  4. Donova, M.V., Nikolayeva, V.M., Dovbnya, D.V. Gulevskaya, S.A., and Suzina, N.E., Methyl-β-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria, Microbiology (SGM), 2007, vol. 153, pp. 1981–1992.

    Article  CAS  Google Scholar 

  5. Dovbnya, D., Khomutov, S., Kollerov, V., and Donova, M.V., Obtaining of 11α-hydroxyandrost-4-ene-3,17-dione from natural sterols, in Microbial Steroids. Methods in Molecular Biology, 2017, vol. 1645, pp. 259–269.

    Article  CAS  Google Scholar 

  6. Egorova, O.V., Gulevskaya, S.A., Puntus, I.F., Filonov, A.E., and Donova, M.V., Production of androstenedione using mutants of Mycobacterium sp., J. Chem. Technol. Biotechnol., 2002, vol. 77, pp. 141–147.

    Article  CAS  Google Scholar 

  7. Egorova, O.V., Nikolayeva, V.M., Sukhodolskaya, G.V., and Donova, M.V., Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp., J. Mol. Catal. B Enzym., 2009, vol. 57, pp. 198–203.

    Article  CAS  Google Scholar 

  8. Fernandes, P., Cruz, A., Angelova, B., Pinheiroa, H.M., and Cabral, J.M.S., Microbial conversion of steroid compounds: recent developments, Enzyme Microb. Technol., 2003, vol. 32, pp. 688–705.

    Article  CAS  Google Scholar 

  9. Fernandez-Cabezon, L., Galan, B., and Garcia, J.L., Engineering Mycobacterium smegmatis for testosterone production, Microb. Biotechnol., 2017, vol. 10, pp. 151–161.

    Article  CAS  Google Scholar 

  10. Fogal, S., Motterle, R., Castellin, A., Arvotti, G., and Bergantino, E. Biocatalyzed synthesis of testosterone, Chem. Eng. Trans., 2010, vol. 20, pp. 61–66.

    Google Scholar 

  11. Goetschel, R. and Bar, R., Formation of mixed crystals in microbial conversion of sterols and steroids, Enzyme Microb. Technol., 1992, vol. 14, pp. 462–469.

    Article  CAS  Google Scholar 

  12. Guevara, G., Olortegui Flores, Y., Fernández de las Heras, L., Perera, J., and Navarro Llorens, J.M., Metabolic engineering of Rhodococcus ruber Chol-4: a cell factory for testosterone production, PLoS One, 2019, vol. 14, e0220492.

    Article  CAS  Google Scholar 

  13. Gupta, R.S., Lo, B., and Son, J., Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera, Front. Microbiol., 2018, vol. 9, art. 67.

    Article  Google Scholar 

  14. Hung, B., Falero, A., Llanes, N., Pérez, C., and Ramirez, M.A., Testosterone as biotransformation product in steroid conversion by Mycobacterium sp., Biotechnol. Lett., 1994, vol. 16, pp. 497–500.

    Article  CAS  Google Scholar 

  15. Kristan, K., Rizner, T.L., Stojan, J., Gerber, J.K., Kremmer, E., and Adamski, J., Significance of individual amino acid residues for coenzyme and substrate specificity of 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus, Chem. Biol. Interact., 2003, vols. 143‒144, pp. 493–501.

    Article  Google Scholar 

  16. Lee, C.H., Chen, C., and Liu, W.H., Production of androsta-1,4-diene-3,17-dione from cholesterol using two-step microbial transformation, Appl. Microbiol. Biotechnol., 1993, vol. 38, pp. 447–452.

    Article  CAS  Google Scholar 

  17. Liu, W.H. and Lo, C.K., Production of testosterone from cholesterol using a single-step microbial transformation of Mycobacterium sp., J. Ind. Microbiol. Biotechnol., 1997, vol. 19, pp. 269–272.

    Article  CAS  Google Scholar 

  18. Lo, C.K., Pan, C.P., and Liu W.H., Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp., J. Ind. Microbiol. Biotechnol., 2002, vol. 28, pp. 280–283.

    Article  CAS  Google Scholar 

  19. Lobastova, T., Fokina, V.,Tarlachkov, S.,Shutov, A., Bragin, E., Kazantsev, A., and Donova, M., Steroid metabolism in thermophilic actinobacteria Saccharopolyspora hirsuta subsp. Hirsuta VKM Ac-666T, Microorganisms, 2021 Dec, vol. 9, no. 12, p. 2554.

  20. Luo, J., Ning, J., Wang, Y., Cheng, Y., Zheng, Y., Shen, Y., and Wang, M., The effect of ethanol on cell properties and steroid 1-en-dehydrogenation biotransformation of Arthrobacter simplex, Biotechnol. Appl. Biochem., 2014, vol. 61, pp. 555‒564.

    Article  CAS  Google Scholar 

  21. Perez, C., Falero, A., LuuDuc, H., Balcinde, Y., and Hung, B.R., A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria, J. Ind. Microbiol., 2006, vol. 33, pp. 719‒723.

    CAS  Google Scholar 

  22. Shao, M., Zhang, X., Rao, Z., Xu, M., Yang, T., Li, H., Xu, Z., and Yang, S., Efficient testosterone production by engineered Pichia pastoris co-expressing human 17β-hydroxysteroid dehydrogenase type 3 and Saccharomyces cerevisiae glucose 6-phosphate dehydrogenase with NADPH regeneration, Green Chem., 2016, vol. 18, pp. 1774–1784.

    Article  CAS  Google Scholar 

  23. Sharma, P., Slathia, P., Somal, P., and Mehta, P., Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species, Ann. Microbiol., 2012, vol. 62, pp. 1651–1659.

    Article  CAS  Google Scholar 

  24. Shen, Y., Wang, M., Zhang, L., Ma, Y., Ma, B., and Zheng, Y., Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transforming Arthrobacter simplex and Mycobacterium sp., Appl. Microbiol. Biotechnol., 2011, vol. 90, pp. 1995–2003.

    Article  CAS  Google Scholar 

  25. Shtratnikova, V., Schelkunov, M., Fokina, V., Bragin, E.Y., Shutov, A.A., and Donova, M.V., Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac-2033D to phytosterol and cortisone 21-acetate, BMC Biotechnol., 2021, vol. 21, art. 7.

    Article  CAS  Google Scholar 

  26. Shtratnikova, V.Y., Bragin, E.Y., Dovbnya, D.V., Pekov, Y.A., Schelkunov, M.I., Strizhov, N.I., Ivashina, T.V., Ashapkin, V.V., and Donova, M.V., Complete genome sequence of sterol transforming Mycobacterium neoaurum strain VKM 1815D, Genome Announc., 2014, vol. 2, pp. e01177-13.

    Article  Google Scholar 

  27. Shtratnikova, V.Y., Schelkunov, V.I., Fokina, V.V., Pekov, Y.A., Ivashina, T., and Donova, M.V., Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D, Curr. Genet., 2016, vol. 62, pp. 643–656.

    Article  CAS  Google Scholar 

  28. Singer, Y., Shity, H., and Bar, R., Microbial transformations in a cyclodextrin medium. Part 2. Reduction of androstenedione to testosterone by Saccharomyces cerevisiae, Ap-pl. Microbiol. Biotechnol., 1991, vol. 35, pp. 731–737.

    CAS  Google Scholar 

  29. Sood, U., Singh, Y., Shakarad, M., and Lal, R., Highlight on engineering Mycobacterium smegmatis for testosterone production, Microb. Biotechnol., 2017, vol. 10, pp. 73–75.

    Article  Google Scholar 

  30. Sukhodolskaya, G., Fokina, V., Shutov, A., Nikolayeva, V., Savinova, T., Grishin, Y., Kazantsev, A., Lukashev, N., and Donova, M., Bioconversion of 6-(N-methyl-N-phenyl)aminomethylandrostane steroids by Nocardioides simplex, Steroids, 2017, vol. 118, pp. 9–16.

    Article  CAS  Google Scholar 

  31. Tang, R., Shen, Y., Wang, M., Zhou, H., and Zhao, Y. Highly efficient synthesis of boldenone from androst-4-ene-3,17-dione by Arthrobacter simplex and Pichia pastoris ordered biotransformation, Bioproc. Biosyst. Eng., 2019a, vol. 42, pp. 933–940.

    Article  CAS  Google Scholar 

  32. Tang, R., Shen, Y., Xia, M., Tu, L., Luo, J., Geng, Y., Gao, T., Zhou, H., Zhao, Y., and Wang, M., A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone, Bioresour. Technol., 2019b, vol. 283, pp. 242–250.

    Article  CAS  Google Scholar 

  33. Yeh, C.-H., Kuo, Y.-S., Chang, C.-M., Liu, W.-H., Sheu, M.-L., and Meng, M., Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione, Microb. Cell Fact., 2014, vol. 13, art. 130.                                                   

    PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to G.V. Sukhodolskaya for the idea for this study and for her invaluable aid in selection and development of the research methods, obtaining and discussing the results, and formulation of the conclusions.

Funding

The work was supported by the Russian Science Foundation, project no. 21-64-00024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Tekucheva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekucheva, D.N., Fokina, V.V., Nikolaeva, V.M. et al. Cascade Biotransformation of Phytosterol to Testosterone by Mycolicibacterium neoaurum VKM Ас-1815D and Nocardioides simplex VKM Ас-2033D Strains. Microbiology 91, 303–312 (2022). https://doi.org/10.1134/S0026261722300099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722300099

Keywords:

Navigation