Skip to main content
Log in

Anti-Biofilm Activity of Biosurfactant Derived from Halomonas sp., a Lipolytic Marine Bacterium from the Bay of Bengal

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Halophilic bacteria isolated from sediment samples of five oil drilling sites in the Bay of Bengal (BOB) were screened for their biosurfactant-producing ability and for lipase production. The anti-biofilm activity and decolorization efficacy of the biosurfactant was also evaluated. Of 99 isolates, 31 isolates produced extracellular lipases. The optimum temperature and pH for the maximum enzyme activity were 30°C and 6, respectively, at a salt concentration of 15 g/L. Of the various organic substrates used (rice bran oil, gingelly oil, olive oil, and coconut oil), gingelly oil induced the maximum lipase production at a concentration of 5%. The most promising isolate was identified as Halomonas sp. (BOB-3) based on 16S rRNA ribotyping. Halomonas sp. BOB-3 produced lipase with a specific activity of 7777.78 U/mg of protein along with production (0.172 mg/mL) of the biosurfactant, which was characterized by thin layer chromatography, Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analyses. The biosurfactant exhibited an anti-biofilm property with an inhibition of bacterial cell growth by 99.5% (V. cholerae) and 99.8% (S. typhi) at 125 µg/mL concentration. This is the first report on Halomonas sp. from BOB with lipolytic and biosurfactant-producing ability. The biosurfactant obtained was efficient in decolorization and also inhibited biofilm formation by V. cholerae and S. typhi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Abalos, A., Pinazo, A., Infante, M.R., Casals, M., Garcia, F., and Manresa, A., Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes, Langmuir, 2001, vol. 17, no. 5, pp.1367‒1371.

    Article  CAS  Google Scholar 

  2. Abdel-Fattah, Y.R., Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design, Biotechnol. Lett., 2002, vol. 24, no.14, pp. 1217‒1222.

    Article  CAS  Google Scholar 

  3. Ahimou, F., Jacques, P., and Deleu, M., Surfactin effects on Bacillus subtilis surface hydrophobicity, Enzyme Microb. Technol., 2000, vol. 27, no. 10, pp. 749‒754.

    Article  CAS  Google Scholar 

  4. Amann, R.I., Ludwig, W., and Schleifer, K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 1995, vol. 59, no. 1, pp. 143‒169.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Annamalai, N., Elayaraja, S., Vijayalakshmi, S., and Balasubramanian, T., Thermostable, alkaline tolerant lipase from Bacillus licheniformis using peanut oil cake as a substrate, Afr. J. Biochem. Res., 2011, vol. 5, no. 6, pp. 176‒181.

    CAS  Google Scholar 

  6. Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Smyth, T.J., and Marchant, R., Microbial biosurfactants production, applications and future potential, Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 2, pp. 427‒444.

    Article  CAS  Google Scholar 

  7. Bharathi, D., Rajalakshmi, G., and Komathi, S., Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil, J. King Saud Univ.-Sci., 2018. https://doi.org/10.1016/j.jksus.2017.12.018

  8. Bodour, A.A. and Miller-Maier, R.M., Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms, J. Microbiol. Methods, 1998, vol. 32, no. 3, pp. 273‒280.

    Article  CAS  Google Scholar 

  9. Borkar, P.S., Bodade, R.G., Rao, S.R., and Khobragade, C.N., Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9, Braz. J. Microbiol., 2009, vol. 40, no. 2, pp. 358‒366.

    Article  CAS  Google Scholar 

  10. Corti Monzón, G., Nisenbaum, M., Herrera Seitz, M.K., and Murialdo, S.E., New findings on aromatic compounds’ degradation and their metabolic pathways, the biosurfactant production and motility of the halophilic bacterium Halomonas sp. KHS3. Curr. Microbiol., 2018, vol. 75, no. 8, pp. 1108‒1118.

    Article  Google Scholar 

  11. Cameotra, S. S., and Makkar, R. S., Biosurfactant-enhanced bioremediation of hydrophobic pollutants, Pure A-ppl. Chem., 2010, vol. 82, no. 1, 97‒116.

    Article  CAS  Google Scholar 

  12. Da Rosa, C.F.C., Michelon, M., de Medeiros Burkert, J.F., Kalil, S.J., and Burkert, C.A.V., Production of a rhamnolipid-type biosurfactant by Pseudomonas aeruginosa LBM10 grown on glycerol, Afr. J. Biotechnol., 2010, vol. 9, no. 53, pp. 9012‒9017.

    Google Scholar 

  13. Dhasayan, A., Kiran, G.S., and Selvin, J., Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery, Appl. Biochem. Biotechnol., 2014, vol. 174, no. 7, pp. 2571‒2584.

    Article  CAS  Google Scholar 

  14. Díaz De Rienzo, M.A., Stevenson, P., Marchant, R., and Banat, I.M. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria, FEMS Microbiol. Lett., 2015, vol. 363, no. 2, p. fnv224. https://doi.org/10.1093/femsle/fnv224

    Article  CAS  PubMed  Google Scholar 

  15. Donio, M.B.S., Ronica, F.A., Viji, V.T., Velmurugan, S., Jenifer, J. S. C.A., Michaelbabu, M., Dhar, P., and Citarasu, T., Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance, SpringerPlus, 2013, vol. 2, no. 1, pp.149‒152.

    Article  Google Scholar 

  16. Donovaro, R., Tselepides, A., Otegui, A., and Della Croce, N., Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply, Prog. Oceanog., 2000, vol. 46, nos. 2‒4, pp. 367‒400.

    Article  Google Scholar 

  17. Ebrahimipour, G., Sadeghi, H., and Zarinviarsagh, M. Statistical methodologies for the optimization of lipase and biosurfactant by Ochrobactrum intermedium strain MZV101 in an identical medium for detergent applications, Molecules, 2017, vol. 22, no. 9, pp. 1460‒1470.

    Article  Google Scholar 

  18. Eltaweel, M.A., Rahman, R.N.Z.R.A., Salleh, A.B., and Basri, M., An organic solvent-stable lipase from Bacillus sp. Strain 42, Ann. Microbiol., 2005, vol. 55, no. 3, p. 187.

    CAS  Google Scholar 

  19. Fracchia, L., Cavallo, M., Allegrone, G., and Martinotti, M.G., A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers, Appl. Microbiol. Biotechnol., 2010, vol. 2, pp. 827‒837.

    Google Scholar 

  20. Franzetti, A., Gandolfi, I., Bestetti, G., Smyth, T.J., and Banat, I.M., Production and applications of trehalose lipid biosurfactants, Eur. J. Lipid Sci. Technol., 2010, vol. 112, no. 6, pp. 617‒627.

    Article  CAS  Google Scholar 

  21. Gaur, R., Gupta, A., and Khare, S.K., Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA, Proc. Biochem., 2008, vol. 43, no. 10, pp. 1040‒1046.

    Article  CAS  Google Scholar 

  22. Ghori, M.I., Iqbal, M.J., and Hameed, A., Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes, Braz. J. Microbiol., 2011, vol. 42, no. 1, pp. 22‒29.

    Article  CAS  Google Scholar 

  23. Gilham, D., and Lehner, R., Techniques to measure lipase and esterase activity in vitro, Methods, 2005, vol. 36, no. 2, pp. 139‒147.

    Article  CAS  Google Scholar 

  24. Gutiérrez-Arnillas, E., Arellano, M., Deive, F.J., Rodríguez, A., and Sanromán, M.Á., Unravelling the suitability of biological induction for halophilic lipase production by Halomonas sp. LM1C cultures, Biores. Technol., 2017, vol. 239, pp. 368‒377.

    Article  Google Scholar 

  25. Habibollahi, H. and Salehzadeh, A., Isolation, optimization, and molecular characterization of a lipase producing bacterium from oil contaminated soils, Pollution, 2018, vol. 4, no. 1, pp. 119‒128.

    CAS  Google Scholar 

  26. He, Y.Q. and Tan, T.W., Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. 99-125, J. Mol. Catal. B: Enzym., 2006, vol. 43, nos. 1‒4, pp. 9‒14.

    Article  CAS  Google Scholar 

  27. Irie, Y., O’toole, G.A., and Yuk, M.H., Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms, FEMS Microbiol. Lett., 2005, vol. 250, no. 2, pp. 237‒243.

    Article  CAS  Google Scholar 

  28. Jadhav, V.V., Pote, S.S., Yadav, A., Shouche, Y.S., and Bhadekar, R.K., Extracellular cold active lipase from the psychrotrophic Halomonas sp. BRI 8 isolated from the Antarctic sea water, Songklanakarin J. Sci. Technol., 2013, vol. 35, no. 6, pp. 1‒8.

    Google Scholar 

  29. Jaeger, K.E. and Reetz, M.T., Microbial lipases form versatile tools for biotechnology, Trend. Biotechnol., 1998, vol. 16, no. 9, pp. 396‒403.

    Article  CAS  Google Scholar 

  30. Jain, D.K., Collins-Thompson, D.L., Lee, H., and Trevors, J.T., A drop-collapsing test for screening surfactant-producing microorganisms, J. Microbiol. Methods, 1991, vol. 13, no. 4, pp. 271‒279.

    Article  Google Scholar 

  31. Jaiswal, A., Preet, M., and Tripti, B., Production and optimization of lipase enzyme from mesophiles and thermophiles, J. Microb. Biochem. Technol., 2017, vol. 9, no. 3. pp. 1‒10.

    CAS  Google Scholar 

  32. Jørgensen, B.B., and Boetius, A., Feast and famine‒microbial life in the deep-sea bed, Nat. Rev. Microbiol., 2007, vol. 5, no. 10, p. 770.

    Article  Google Scholar 

  33. Jørgensen, L., Stedmon, C.A., Kragh, T., Markager, S., Middelboe, M., and Søndergaard, M., Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter, Mar. Chem., 2011, vol. 126, no. 1-4, pp. 139‒148.

    Article  Google Scholar 

  34. Kemp, W., Organic Spectroscopy, New York: Palgrave, 1991, pp. 243‒269.

    Book  Google Scholar 

  35. Kiran, G.S., Thomas, T.A., Selvin, J., Sabarathnam, B., and Lipton, A.P., Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture, Biores. Technol., 2010, vol. 101, no. 7, pp. 2389‒2396.

    Article  Google Scholar 

  36. Kumar, V.M., Janakiram, P., Sivaprasad, B., and Jayasree, L., Physico-chemical parameters and bacterial abundance in coastal water of Visakhapatnam, Bay of Bengal India, with special reference to Pseudomonas sp. and Vibrio sp., Ind. J. Geo-Mar. Sci., 2017, vol. 46, no. 8, pp. 1588‒1595

    Google Scholar 

  37. Kumarevel, T.S., Gopinath, S.C., Hilda, A., Gautham, N., and Ponnusamy, M.N., Purification of lipase from Cunninghamella verticillata by stepwise precipitation and optimized conditions for crystallization, World J. Microbiol. Biotechnol., 2005, vol. 21, no. 1, pp. 23‒26.

    Article  CAS  Google Scholar 

  38. Larbidaouadi, K., Benattouche, Z., and Abbouni, B., Screening selection identification production and optimization of bacterial lipase isolated from industrial rejection of gas station, Int. J. Biotechnol. Allied Field., 2015, vol. 3, no. 9, pp.146‒153.

    CAS  Google Scholar 

  39. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265‒275.

    CAS  Google Scholar 

  40. Mandal, S.M., Barbosa, A.E., and Franco, O.L., Lipopeptides in microbial infection control: scope and reality for industry, Biotechnol. Adv., 2013, vol. 31, no. 2, pp. 338‒345.

    Article  CAS  Google Scholar 

  41. Mobarak-Qamsari, E., Kasra-Kermanshahi, R., and Moosavi-Nejad, Z., Isolation and identification of a novel, lipase-producing bacterium, Pseudomonas aeruginosa KM110, Iran. J. Microbiol., 2011, vol. 3, no. 2, pp. 92‒99.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mohanram, R., Jagtap, C., and Kumar, P., Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor, Mar. Pollut. Bullet., 2016, vol. 105, no. 1, pp. 131‒138.

    Article  CAS  Google Scholar 

  43. Nandhini, B. and Josephine, R.M., A study on bacterial and fungal diversity in potted soil, Int. J. Curr. Microbiol. Appl. Sci., 2013, vol. 2, no. 2, pp. 1‒5.

    Google Scholar 

  44. Nathan, K.V., Rani, M.E., Gunaseeli, R.R., and Kannan, N.D., Lipase production using Aspergillus japonicus MF-1 through biotransformation of agro-waste and medicinal oil effluent, Int. J. Curr. Microbiol. Appl. Sci., 2017, vol. 6, no. 4, pp. 2005‒2020.

    Google Scholar 

  45. Ng, H.J., Lopez-Perez, M., Webb, H.K., Gomez, D., Sawabe, T., Ryan, J., Vyssotski, M., Bizet, C., Malherbe, F., Mikhailov, V.V., and Crawford, R.J., Marinobacter salarius sp. nov. and Marinobacter similis sp. nov., isolated from sea water, PLoS One, 2014, vol. 9, no. 9, p. e106514.

    Article  Google Scholar 

  46. Odisi, E.J., Silvestrin, M.B., Takahashi, R.Y.U., da Silva, M.A.C., and Lima, A.O.D.S., Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria, Electron. J. Biotechnol., 2012, vol. 15, no. 5, pp. 18‒21.

    Google Scholar 

  47. Padmavathi, A.R., Abinaya, B., and Pandian, S.K., Phenol, 2, 4-bis (1, 1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens, Biofouling, 2014, vol. 30, no. 9, pp. 1111‒1122.

    Article  CAS  Google Scholar 

  48. Pandey, A., Benjamin, S., Soccol, C.R., Nigam, P., Krieger, N., and Soccol, V.T., The realm of microbial lipases in biotechnology, Biotechnol, Appl. Biochem., 1999, vol. 29, no. 2, pp.119‒131.

    CAS  Google Scholar 

  49. Patowary, K., Patowary, R., Kalita, M.C., and Deka, S., Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon, Front. Microbiol., 2017, vol. 8, p. 279.

    Article  Google Scholar 

  50. Pekdemir, T., Ishigami, Y., and Uchiyama, H., Characterization of aescin as a biosurfactant for environmental remediation, J. Surfactants Deterg., 1999, vol. 2, no. 3, pp. 337‒341.

    Article  CAS  Google Scholar 

  51. Pornsunthorntawee, O., Wongpanit, P., Chavadej, S., Abe, M., and Rujiravanit, R., Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil, Biores. Technol., 2008, vol. 99, no. 6, pp. 1589‒1595.

    Article  CAS  Google Scholar 

  52. Priji, P., Sajith, S., Unni, K.N., Anderson, R.C., and Benjamin, S., Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant, J. Bas. Microbiol., 2017, vol. 57, no. 1, pp. 21‒33.

    Article  CAS  Google Scholar 

  53. Ramesh, S., Rajesh, M., and Mathivanan, N., Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614, Bioproc. Biosys. Eng., 2009, vol. 32, no. 6, pp. 791‒800.

    Article  CAS  Google Scholar 

  54. Rosenberg, M., Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity, FEMS Microbiol. Lett., 1984, vol. 22, no. 3, pp. 289‒295.

    Article  CAS  Google Scholar 

  55. Satpute, S.K., Banat, I.M., Dhakephalkar, P.K., Banpurkar, A.G., and Chopade, B.A., Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms,  Biotechnol. Adv., 2010, vol. 28, no. 4, pp. 436‒450.

    Article  CAS  Google Scholar 

  56. Saxena, R.K., Microbial lipases: potential biocatalysts for the future industry, Curr. Sci., 1999, vol. 77, pp. 101‒115.

    CAS  Google Scholar 

  57. Sharma, R., Chisti, Y., and Banerjee, U.C., Production, purification, characterization, and applications of lipases, Biotechnol. Adv., 2001, vol. 19, no. 8, pp. 627‒662.

    Article  CAS  Google Scholar 

  58. Sharma, P., Sharma, N., Pathania, S., and Handa, S., Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry, J. Genet. Eng. Biotechnol.,  2017, vol. 15, no. 2, pp. 369‒377.

    Article  Google Scholar 

  59. Shukla, B.N. and Desai, P.V., Isolation, characterization and optimization of lipase producing Pseudomonas sp. from oil contaminated sites, Int. J. Curr. Microbiol. Appl. Sci., 2016, vol. 5, no. 5, pp. 902‒909.

    Article  CAS  Google Scholar 

  60. Shukla, S.K. and Rao, T.S., An improved crystal violet assay for biofilm quantification in 96-well microtitre plate, BioRxiv, 2017, p. 100214.

  61. Sivapathasekaran, C., Das, P., Mukherjee, S., Saravanakumar, J., Mandal, M., and Sen, R., Marine bacterium derived lipopeptides: characterization and cytotoxic activity against cancer cell lines, Int. J. Peptide Res. Therap., 2010, vol. 16, no. 4, pp. 215‒222.

    Article  CAS  Google Scholar 

  62. Sugihara, A., Tani, T., and Tominaga, Y., Purification and characterization of a novel thermostable lipase from Bacillus sp., J. Biochem., 1991, vol. 109, no. 2, pp. 211‒216.

    CAS  PubMed  Google Scholar 

  63. Thanomsub, B., Watcharachaipong, T., Chotelersak, K., Arunrattiyakorn, P., Nitoda, T., and Kanzaki, H., Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae, J. Appl. Microbiol., 2004, vol. 96, no. 3, pp. 588‒592.

    Article  CAS  Google Scholar 

  64. Toribio, J., Escalante, A.E., and Soberón-Chávez, G., Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa, Eur. J. Lipid Sci. Technol., 2010, vol. 112, no. 10, pp. 1082‒1087.

    Article  CAS  Google Scholar 

  65. Veerasingam, S., Venkatachalapathy, R., Sudhakar, S., Raja, P., and Rajeswari, V., Petroleum hydrocarbon concentrations in eight mollusc species along Tamilnadu coast, Bay of Bengal, India, J. Environ. Sci., 2011, vol. 23, no. 7, pp. 1129‒1134.

    Article  CAS  Google Scholar 

  66. Yang, J. and Dang, H., Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium, FEMS Microbiol. Lett., 2011, vol. 325, no. 1, pp. 71‒76.

    Article  CAS  Google Scholar 

  67. Youssef, N.H., Duncan, K.E., Nagle, D.P., Savage, K.N., Knapp, R.M., and McInerney, M.J., Comparison of methods to detect biosurfactant production by diverse microorganisms, J. Microbiol. Methods, 2004, vol. 56, no. 3, pp. 339‒347.

    Article  CAS  Google Scholar 

  68. Yu, E.Y., Kwon, M.A., Lee, M., Oh, J.Y., Choi, J.E., Lee, J.Y., Song, B.K., Hahm, D.H., and Song, J.K., Isolation and characterization of cold-active family VIII esterases from an arctic soil metagenome, Appl. Microbiol. Biotechnol., 2011, vol. 90, no. 2, pp. 573‒581.

    Article  CAS  Google Scholar 

  69. Zarinviarsagh, M., Ebrahimipour, G., and Sadeghi, H., Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application, Lipids Health Dis., 2017, vol. 16, no. 1, p. 177.

    Article  Google Scholar 

  70. Zouaoui, B. and Bouziane, A., Isolation, optimisation and purification of lipase production by Pseudomonas aeruginosa,  J. Biotechnol. Biomat., 2011, vol. 7, no. 1, pp. 345‒351.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Director, NIO, Goa and Scientist- in- charge, CSIR-NIO (RC), Kochi for their support and advice. We also thank Dr. R. Joythibabu for the help rendered for sample collections.

Funding

NVK acknowledges the financial support of Science and Engineering Board (SERB), Government of India through National Post-Doctoral fellowship [PDF/2016/000438]. This is NIO contribution number 6393. Authors acknowledge Kerala Forest Research Institute (KFRI), Central Instrumentation Unit, Peechi for GC-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ammini.

Ethics declarations

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

STATEMENT ON THE WELFARE OF ANIMALS

This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayanadath, S., Nathan, V.K. & Ammini, P. Anti-Biofilm Activity of Biosurfactant Derived from Halomonas sp., a Lipolytic Marine Bacterium from the Bay of Bengal. Microbiology 88, 585–599 (2019). https://doi.org/10.1134/S0026261719050072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719050072

Keywords:

Navigation