Skip to main content
Log in

RSM optimization of dibenzothiophene biodesulfurization by newly isolated strain of Rhodococcus erythropolis PD1 in aqueous and biphasic systems

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Dibenzothiophene (DBT) is a recalcitrant organic sulfur compound which remains in the crude oil after hydrodesulfurization (HDS) process and can be removed by biodesulfurization (BDS). The objective of this study was the isolation of novel strain capable more BDS rate and optimization of DBT removal by both growing and resting cells. Response surface Methodology (RSM) was applied for evaluating the interactive effects of three independent factors including DBT concentration, temperature and pH. The three factors Box-Benken design with three center points was performed to generate the optimum condition for DBT removal by growing cells in aqueous medium and resting cells in biphasic medium. Among the isolated bacteria from oil-contaminated soil, a gram-positive, non-spore forming isolate designated PD1 showed the high BDS rate and capable to convert the DBT to 2-hydroxybiphenyl (2-HBP) as the final product. Analysis of variance (ANOVA) demonstrated that all of the studied parameters in the growing cells system showed significant effect on BDS rate, while in the resting cells effect of pH was not significant (P > 0.05). Maximum 2-HBP production (0.21 mM) by growing cells of PD1 strain was obtained at 0.38 mM initial DBT concentration, pH 6.88 and temperature of 27.57°C. For resting cells, maximum BDS activity of PD1 strain was determined as 0.46 μM 2-HBP/min g DCW at optimum pH 6.29, temperature of 26.13°C and DBT concentration of 7.73 mM. The BDS efficiency of Rhodococcus erythropolis PD1 (NCBI Gene Bank Accession no. JX625154) was increased by setting each factor at the optimum level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. and Stout, S.A., Oil Spill Environmental Forensics: Fingerprinting and Source Identification, Toronto: Elsevier, 2006.

    Google Scholar 

  2. Nuhu, A.A., Bio-catalytic desulfurization of fossil fuels: a mini review, Rev. Environ. Sci. Biotechnol., 2013, vol. 12, pp. 9–23.

    Article  CAS  Google Scholar 

  3. Derikvand, P., Etemadifar, Z., and Biria, D., Taguchi optimization of dibenzothiophene biodesulfurization by Rhodococcus erythropolis R1 immobilized cells in a biphasic system, Int. Biodeter. Biodegr., 2014, vol. 86, pp. 343–348.

    Article  CAS  Google Scholar 

  4. Ma, X., Sun, L., and Song, C., A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications, Catal. Today, 2002, vol. 77, pp. 107–116.

    Article  CAS  Google Scholar 

  5. Borgne, S.L. and Quintero, R., Biotechnological processes for the refining of petroleum, Fuel Process Technol., 2003, vol. 81, pp. 155–169.

    Article  Google Scholar 

  6. Gou, Z., Liu, H., Luo, M., Li, S., Xing, J., and Chen, J., Isolation and identification of nondestructive desulfurization bacterium, Sci. China Ser. B, vol. 45, pp. 521–531.

  7. Ting, M., The desulfurization pathway in Rhodococcus, Microbiol. Monographs, 2010, vol. 16, pp. 207–230.

    Article  Google Scholar 

  8. Yan, H., Kishimoto, M., Omasa, T., Katakura, Y., Suga, K.I., Okumura, K., and Yoshikawa, O., Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding, J. Biosci. Bioeng., 2000, vol. vol. 89, pp. 361–366.

    Article  CAS  PubMed  Google Scholar 

  9. Derikvand, P., Etemadifar, Z., and Saber, H., Optimization of nicotinamide and riboflavin in the biodesulfurization of dibenzothiophene using response surface methodology, Bio. J. Micro., 2013, vol. 4, pp. 35–40.

    Google Scholar 

  10. Calzada, J., Alcon, A., Santos, V.E., and Garcia-Ochoa, F., Mixtures of Pseudomonas putida CECT 5279 cells of different ages: optimization as biodesulfurization catalyst, Process. Biochem., 2011, vol. 46, pp. 1323–1328.

    Article  CAS  Google Scholar 

  11. Zhang, S.H., Chen, H., and Li, W., Kinetic analysis of biodesulfurization of model oil containing multiple alkyl dibenzothiophenes, Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 2193–2200.

    Article  CAS  PubMed  Google Scholar 

  12. Khurana, S., Kapoor, M., Gupta, S., and Kuhad, R., Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology, Indian J. Microbiol., 2007, vol. 47, pp. 144–152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tan, K.T., Lee, K.T., and Mohamed, A.R., A glycerolfree process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology, Biores. Technol., 2010, vol. 101, pp. 965–969.

    Article  CAS  Google Scholar 

  14. Caro, A., Boltes, K., Leton, P., and Garcia-Calvo, E., Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria, Biochem. Eng. J., 2007, vol. 35, pp. 191–197.

    Article  CAS  Google Scholar 

  15. Ansari, F., Prayuenyong, P., and Tothill, I.E., Biodesulfurization of dibenzothiophene by Shewanella putrefaciens, J. Bio. Phys. Chem., 2007, vol. 7, pp. 75–78.

    Article  CAS  Google Scholar 

  16. Ohshiro, T., Kobayashi, Y., Hine, Y., and Izumi, Y., Involvement of flavin coenzyme in dibenzothiophene degrading enzyme system from Rhodococcus erythropolis D-1, Biosci. Biotechnol. Biochem., 1995, vol. 59, pp. 1349–1354.

    Article  CAS  Google Scholar 

  17. Kim, Y.J., Chang, J.H., Cho, K., Ryu, H.W., and Chang, Y.K., A physiological study on growth and dibenzothiophene (DBT) desulfurization characteristics of Gordonia sp. CYKS1, Korean J. Chem. Eng., 2004, vol. 21, pp. 436–441.

    Article  CAS  Google Scholar 

  18. Gallado, M.E., Fernandez, A., Lorenzo, V.D., Garcia, J.L., and Diaz, E., Designing recombinant Pseudomonas strains to enhance biodesulfurization, J. Bacteriol., 1997, vol. 176, pp. 6707–6714.

    Google Scholar 

  19. Kawaguchi, H., Kobayashi, H., and Sato, K., Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures, J. Biosci. Bioeng., 2012, vol. 113, pp. 360–366.

    Article  CAS  PubMed  Google Scholar 

  20. Ratkowsky, D., Olley, J., McMeekin, T., and Ball, A., Relationship between temperature and growth rate of bacterial cultures, J. Bacteriol., 1982, vol. 149, pp. 1–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Furuya, T., Kirimura, K., Kino, K., and Usami, S., Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1, FEMS Microbiol. Lett., 2001, vol. 24, pp. 129–133.

    Article  Google Scholar 

  22. Madigan, M.T., Martinko, J.M., Stahl, D.A., and Clark, D.P., Brock Biology of Microorganisms, San Francisco: Cummings, 2012.

    Google Scholar 

  23. Berg, J.M., Tymoczko, J., and Stryer, L., Biochemistry, New York: Freeman, 2007.

    Google Scholar 

  24. Ardakani, M.R., Aminsefat, A., Rasekh, B., Yazdiyan, F., Zargar, B., Zarei, M., and Najafzadeh, H., Biodesulfurization of dibenzothiophene by a newly isolated Stenotrophomonas maltophila strain Kho1, WASJ, 2010, vol. 10, pp. 272–278.

    CAS  Google Scholar 

  25. Matsubara, T., Ohshiro, T., Nishina, Y., and Izumi, Y., Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1, Allp. Environ. Microbiol., 2001, vol. 67, pp. 1179–1184.

    Article  CAS  Google Scholar 

  26. Nassar, H.N., El-Gendy, N.Sh., Abo-State, M.A., Moustafa, Y.M., Mahdy, H.M., and El-Temtamy, S.A., Desulfurization of dibenzothiophene by a novel strain Brevibacillus invocatus C19 isolated from Egyptian coke, Biosci. Biotech. Res. ASIA, 2013, vol. 10, pp. 29–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Etemadifar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derikvand, P., Etemadifar, Z. & Biria, D. RSM optimization of dibenzothiophene biodesulfurization by newly isolated strain of Rhodococcus erythropolis PD1 in aqueous and biphasic systems. Microbiology 84, 65–72 (2015). https://doi.org/10.1134/S002626171501004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171501004X

Keywords

Navigation