Skip to main content
Log in

Bio-catalytic desulfurization of fossil fuels: a mini review

  • Mini-Review
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

For a long time now, the combustion of fossil fuels to give usable energy has led to the release of many types of pollutants into the atmosphere. Of particular interest is sulfur dioxide derived from combustion of diesel and related organic-sulfur containing media. Its presence in the air has resulted in the deterioration of health and depletion in aesthetic quality of materials. As a result, environmental regulations are now put in place to regulate the level of sulfur in different fuel types. To achieve this goal, many techniques have been tested, and bio-catalytic desulfurization is now being considered due to some limitations with conventional hydrodesulfurization approach. This essay discusses various kinds of microbial isolates that are harnessed for this purpose, and the influence of genetic engineering techniques and various factors on the activities of these biocatalysts. With increasing knowledge of microbial ecology, better understanding of biochemical systems, exploration of new conversion pathways and optimization of bioreactor design, enhancement in this approach is expected to bring an increase in its acceptability and improve the prospects of its full commercialization as viable alternative to the conventional hydrodesulfurization of fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbad-Andaloussi S, Lagnel C, Warzywoda M, Monot F (2003) Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enzyme Microb Technol 32:446–454

    CAS  Google Scholar 

  • Abed RMM, Koster J (2005) The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodetior Biodegrad 55:29–37

    CAS  Google Scholar 

  • Abed RMM, Zein B, Al-Thukair A, de Beer D (2007) Phylogenetic diversity and activity of aerobic heterotrophic bacteria from a hypersaline oil-polluted microbial mat. Syst Appl Microbiol 30:319–330

    CAS  Google Scholar 

  • Alcon A, Santos VE, Martin AB, Yustos P, Garcia-Ochoa F (2005) Biodesulfurisation of DBT with Pseudomonas putida CECT5279 by resting cells: influence of cell growth time on reducing equivalent concentration and HpaC activity. Biochem Eng J 26:168–175

    CAS  Google Scholar 

  • Alves L, Paixão SM (2011) Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation. Bioresour Technol 102:9162–9166

    CAS  Google Scholar 

  • Alves L, Melo M, Mendonca D, Simoes F, Matos J, Tenreiro R, Girio FM (2007) Sequencing, cloning and expression of the dsz genes required for dibenzothiophene sulfone desulfurization from Gordonia alkanivorans strain 1B. Enzyme Microb Technol 40:1598–1603

    CAS  Google Scholar 

  • Alves L, Marques S, Matos J, Tenreiro R, Girio FM (2008) Dibenzothiophene desulfurization by Gordonia alkanivorans strain1B using recycled paper sludge hydrolyzate. Chemosphere 70:967–973

    CAS  Google Scholar 

  • Amin GA (2011) Integrated two-stage process for biodesulfurization of model oil by vertical rotating immobilized cell reactor with the bacterium Rhodococcus erythropolis. Petr Environ Biotechnol 2:1–4

    Google Scholar 

  • Ansari F, Prayuenyong P, Tothill I (2007) Biodesulfurization of dibenzothiophene by Shewanella putrefaciens NCIMB 8768. J Biol Phys Chem 7:75–78

    CAS  Google Scholar 

  • Ansari F, Grigoriev P, Libor S, Tothill IE, Ramsden JJ (2009) DBT degradation enhancement by decorating Rhodococcus erythropolis IGTS8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng 102:1505–1512

    CAS  Google Scholar 

  • Babich IV, Moulijn JA (2003) Science and technology of novel process for deep desulfurization of oil refinery streams: a review. Fuel 82:607–631

    CAS  Google Scholar 

  • Bahuguna A, Lily MK, Munjal A, Singh RN, Dangwal K (2010) Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil. J Environ Sci 23:975–982

    Google Scholar 

  • Bhatia S, Sharma DK (2010a) Mining of genomic databases to identify novel biodesulfurizing microorganisms. J Ind Microbiol Biotechnol 37:425–429

    CAS  Google Scholar 

  • Bhatia S, Sharma DK (2010b) Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50:104–109

    CAS  Google Scholar 

  • Boniek D, Figueiredo D, Pylro VS, Duarte GF (2010) Characterization of bacterial strains capable of desulphurization in soil and sediment samples from Antarctica. Extremophiles 14:475–481

    CAS  Google Scholar 

  • Bouchez-Naïtali M, Abbad-Andaloussi S, Warzywoda M, Monot F (2004) Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium. Appl Microbiol Biotechnol 65:440–445

    Google Scholar 

  • Calzada J, Heras S, Carbajo J, Alcon A, Santos VE, Garcia JL, Garcia-Ochoa F (2008) Opitimization of a desulfurizating biocatalyst by combining cells of different age of Pseudomonas putida CECT 5279. Chem Eng Trans 14:259–466

    Google Scholar 

  • Calzada J, Heras S, Alcon A, Santos VE, Garcia-Ochoa F (2009) Biodesulfurization of dibenzothiophene (DBT) using Pseudomonas putida CECT 5279: a biocatalyst formulation comparison. Energy Fuels 23:5491–5495

    CAS  Google Scholar 

  • Calzada J, Alcon A, Santos VE, Garcia-Ochoa F (2011) Mixtures of Pseudomonas putida CECT 5279 cells of different ages: optimization as biodesulfurization catalyst. Process Biochem 46:1323–1328

    CAS  Google Scholar 

  • Caro A, Boltes K, Leton P, Garcia-Calvo E (2007a) Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J 35:191–197

    CAS  Google Scholar 

  • Caro A, Leton P, Garcia-Calvo E, Setti L (2007b) Enhancement of dibenzothiophene biodesulfurization using β-cyclodextrins in oil-to-water media. Fuel 86:2632–2636

    CAS  Google Scholar 

  • Caro A, Boltes K, Leton P, Garcia-Calvo E (2008) Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT 5279 in biphasic media. Chemosphere 73:663–669

    CAS  Google Scholar 

  • Chen H, Zhang W-J, Cai Y-B, Zhang Y, Li W (2008a) Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. Bioresour Technol 99:6928–6933

    CAS  Google Scholar 

  • Chen H, Zhang W-J, Chen J-M, Cai Y-B, Li W (2008b) Desulfurization of various organic sulfur compounds and the mixture of DBT + 4,6-DMDBT by Mycobacterium sp. ZD-19. Bioresour Technol 99:3630–3634

    CAS  Google Scholar 

  • Chen H, Cai Y-B, Zhang W-J, Li W (2009) Methoxylation pathway in biodesulfurization of model organosulfur compounds with Mycobacterium sp. Bioresour Technol 100:2085–2087

    CAS  Google Scholar 

  • Davoodi-Dehaghani F, Vosoughi M, Ziaee AA (2010) Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioresour Technol 101:1102–1105

    CAS  Google Scholar 

  • De Vasconcellos SP, Crespim E, da Cruz GF, Senatore DB, Simioni KCM, Neto EVS, Marsaioli AJ, de Oliveira VM (2009) Isolation, biodegradation ability and molecular detection of hydrocarbon degrading bacteria in petroleum samples from a Brazilian offshore basin. Org Geochem 40:574–588

    Google Scholar 

  • Del Olmo CH, Alcon A, Santos VE, Garcia-Ochoa F (2005) Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of media composition. Enzyme Microb Technol 37:157–166

    Google Scholar 

  • Díaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173–180

    Google Scholar 

  • Dinamarca MA, Ibacache-Quiroga C, Baeza P, Galvez S, Villarroel M, Olivero P, Ojeda J (2010) Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. Bioresour Technol 101:2375–2378

    CAS  Google Scholar 

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510

    CAS  Google Scholar 

  • Etemadifar ZG, Emtiazi G, Christofi N (2008) Enhanced desulfurization activity in protoplast transformed Rhodococcus erythropolis. Am Eur J Agric Environ Sci 3:795–801

    Google Scholar 

  • Feng J, Zeng Y, Ma C, Cai X, Zhang Q, Tong M, Yu B, Xu P (2006) The surfactant Tween 80 enhances biodesulfurization. Appl Environ Microbiol 72(11):7390–7393

    CAS  Google Scholar 

  • Folsom BR, Schieche DR, Digrazia PM, Werner J, Palmer S (1999) Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl Environ Microbiol 65:4967–4972

    CAS  Google Scholar 

  • Frase H, Smith CA, Toth M, Champion MM, Mobashery S, Vakulenko SB (2011) Identification of products of inhibition of GES-2 β-lactamase by tazobactam by x-ray crystallography and spectrometry. J Biol Chem 286:14396–14409

    CAS  Google Scholar 

  • Furuya T, Takahashi S, Ishii Y, Kino K, Kirimura K (2004) Cloning of a gene encoding flavin reductase coupling with dibenzothiophene monooxygenase through coexpression screening using indigo production as selective indication. Biochem Biophys Res Commun 313:570–575

    CAS  Google Scholar 

  • Galan B, Diaz E, Garcia JL (2000) Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2:687–694

    CAS  Google Scholar 

  • Gallardo ME, Victor De Lorenzo AF, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160

    CAS  Google Scholar 

  • Garcia CL, Becchi M, Grenier-Loustalot MF, Paisse O, Szymanski R (2002) Analysis of aromatic sulfur compounds in gas oils using GC with sulfur chemiluminescence detection and high-resolution MS. Anal Chem 74:3849–3857

    Google Scholar 

  • Gomez E, Santos VE, Alcon A, Martin AB, Garcia-Ochoa F (2006) Oxygen-uptake and mass-transfer rates on the growth of Pseudomonas putida CECT5279: influence on biodesulfurization (BDS) capability. Energy Fuels 20:1565–1571

    CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  Google Scholar 

  • Grötzschel S, Köster J, Abed RMM, de Beer D (2002) Degradation of petroleum model compounds immobilized on clay by a hypersaline microbial mat. Biodegradation 13:273–283

    Google Scholar 

  • Guchhait S, Biswas D, Bhattacharya P, Chowdhury R (2005) Bio-desulfurization of model organo-sulfur compounds and hydrotreated diesel—experiments and modeling. Chem Eng J 112:145–151

    CAS  Google Scholar 

  • Gunam IBW, Yaku Y, Hirano M, Yamamura K, Tomita F, Sone T, Asano K (2006) Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J Biosci Eng 101:322–327

    CAS  Google Scholar 

  • Guobin S, Jianmin X, Chen G, Huizhou L, Jiayong C (2005) Biodesulfurization using Pseudomonas delafieldii in magnetic polyvinyl alcohol beads. Lett Appl Microbiol 40:30–36

    CAS  Google Scholar 

  • Guobin S, Huaiying Z, Jianmin X, Guo C, Wangliang L, Huizhou L (2006) Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture. Biochem Eng J 27:305–309

    Google Scholar 

  • Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366

    CAS  Google Scholar 

  • Gupta N, Adhikari DK, Stobdan T, Roychoudhury PK, Deb JK (2007) Purification of dibenzothiophene monooxygenase from a recombinant Escherichia coli. Biotechnol Lett 29:1465–1468

    CAS  Google Scholar 

  • Hai Y, Xudong S, Qianqian X, Zhao M, Chengbin X, Jun N (2008) Effects of nicotinamide and riboflavin on the biodesulfurization activity of dibenzothiophene by Rhodococcus erythropolis USTB-03. J Environ Sci 20:613–618

    Google Scholar 

  • Hou Y, Kong Y, Yang J, Zhang J, Shi D, Xin W (2005) Biodesulfurization of dibenzothiophene by immobilized cells of Pseudomonas stutzeri UP-1. Fuel 84:1975–1979

    CAS  Google Scholar 

  • HuaiYing Z, QingFen L, YuGuang L, WangLiang L, XiaoChao X, JianMin X, HuiZhou L (2008) Selection of adsorbents for in situ coupling technology of adsorptive desulfurization and biodesulfurization. Sci China Ser B 51:69–77

    Google Scholar 

  • Ishii Y, Kozaki S, Furuya T, Kino K, Kirimura K (2005) Thermophilic biodesulfurization of various heterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103. Curr Microbiol 50:63–70

    CAS  Google Scholar 

  • Jiménez V, Bravo V, Gutierrez LG (2011) integral approach for improving the degradation of recalcitrant petrohydrocarbons in a fixed-film reactor. Water Air Soil Pollut 220:301–312

    Google Scholar 

  • Jorjani E, Rezai B, Vossoughi M, Osanloo M (2004) Biodesulfurization of the tabas deposit coal by microorganisms. J Min Sci 40:310–320

    Google Scholar 

  • Kamali N, Tavallaie M, Bambai B, Karkhane AA, Miri M (2010) Site-directed mutagenesis enhances the activity of NADH-FMN oxidoreductase (DszD) activity of Rhodococcus erythropolis. Biotechnol Lett 32:921–927

    CAS  Google Scholar 

  • Kawaguchi H, Kobayashi H, Sato K (2011) Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil–water biphasic reaction mixtures. J Biosci Bioeng. doi:10.1016/j.jbiosc.2011.10.017

    Google Scholar 

  • Kilbane JJ (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314

    CAS  Google Scholar 

  • Kirimura K, Furuya T, Nishii Y, Ishii Y, Kino K, Usami S (2001) Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J Biosci Bioeng 91:262–266

    CAS  Google Scholar 

  • Kirkwood KM, Andersson JT, Fedorak PM, Foght JM, Gray MR (2007) Sulfur from benzothiophene and alkylbenzothiophenes supports growth of Rhodococcus sp. strain JVH1. Biodegradation 18:541–549

    CAS  Google Scholar 

  • Kropp KG, Fedorak PM (1998) A review of the occurrence, toxicity and biodegradation of condensed thiophenes found in petroleum. Can J Microbiol 44:605–622

    CAS  Google Scholar 

  • Kruger NJ (2002) The Bradford method for protein quantitation. In: Walker JM (ed) The protein protocols handbook, 2nd edn. Humana Press Inc., Totowa, pp 15–21

    Google Scholar 

  • Labana S, Pandey G, Jain RK (2005) Desulphurization of dibenzothiophene and diesel oils by bacteria. Lett Appl Microbiol 40:159–163

    CAS  Google Scholar 

  • Larssen T, Lydersen E, Tang D, He Y, Gao J, Liu H, Duan L, Seip HM, Vogt RD, Mulder J et al (2006) Acid rain in China: rapid industrialization has put citizens and ecosystems at risk. Environ Sci Technol 40:418–425

    CAS  Google Scholar 

  • Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2004) Crystallization and preliminary X-ray analyses of desulfurization enzyme DszB and its C27S mutant complexed with biphenyl-2-sulfinic acid. Act Crystallogr Sec D Biol Chrystallogr 60:1636–1638

    Google Scholar 

  • Li W, Zhang Y, Wang MD, Shi Y (2005) Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol Lett 247:45–50

    CAS  Google Scholar 

  • Li W, Wang M-D, Chen H, Chen J-M, Shi Y (2006) Biodesulfurization of dibenzothiophene by growing cells of Gordonia sp. in batch cultures. Biotechnol Lett 28:1175–1179

    CAS  Google Scholar 

  • Li F, Zhang Z, Feng J, Cai X, Xu P (2007a) Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J Biotechnol 127:222–228

    CAS  Google Scholar 

  • Li Y, Xing J, Li W, Xiong X, Xin Li X, Liu H (2007b) Medium optimization of Rhodococcus erythropolis LSSE8-1 by Taguchi methodology for petroleum biodesulfurization. Korean J Chem Eng 24:781–786

    CAS  Google Scholar 

  • Li G-Q, Li S–S, Qu S-W, Liu Q-K, Ma T, Zhu L, Liang F-L, Liu R-L (2008) Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol Lett 30:1759–1764

    CAS  Google Scholar 

  • Li J, Feng J, Li Q, Ma C, Yu B, Gao C, Wu G, Xu P (2009a) Both FMNH2 and FADH2 can be utilized by the dibenzothiophene monooxygenase from a desulfurizing bacterium Mycobacterium goodii X7B. Bioresour Technol 100:2594–2599

    CAS  Google Scholar 

  • Li W, Tang H, Liu Q, Xing J, Li Q, Wang D, Yang M, Li X, Liu H (2009b) Deep desulfurization of diesel by integrating adsorption and microbial method. Biochem Eng J 44:297–301

    CAS  Google Scholar 

  • Li Y-G, Gao H-S, Li W-L, Xing J-M, Liu H-Z (2009c) In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour Technol 100:5092–5096

    CAS  Google Scholar 

  • Ma X, Sakanishi K, Mochida I (1996) Hydrodesulfurization reactivities of various sulfur compounds in vacuum gas oil. Ind Eng Chem Res 35:2487–2494

    CAS  Google Scholar 

  • Ma X, Sun L, Song C (2002) A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catal Today 77:107–116

    CAS  Google Scholar 

  • Ma C-Q, Feng J-H, Zeng Y–Y, Cai X-F, Sun B-P, Zhang Z-B, Blankespoor HD, Xu P (2006) Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Chemosphere 65:165–169

    CAS  Google Scholar 

  • Martin AB, Alcon A, Santos VE, Garcia-Ochoa F (2004) Production of a biocatalyst of Pseudomonas putida CECT5279 for dibenzothiophene (DBT) biodesulfurization for different media compositions. Energy Fuels 18:851–857

    CAS  Google Scholar 

  • Martin AB, Alcon A, Santos VE, Garcia-Ochoa F (2005) Production of a biocatalyst of Pseudomonas putida CECT5279 for DBT biodesulfurization: influence of the operational conditions. Energy Fuels 19:775–782

    CAS  Google Scholar 

  • McFarland BL (1999) Biodesulfurization. Curr opin Microbiol 2:257–264

    CAS  Google Scholar 

  • Meesala L, Balomajumder C, Chatterjee S, Roy P (2008) Biodesulfurization of dibenzothiophene using recombinant Pseudomonas strain. J Chem Technol Biotechnol 83:294–298

    CAS  Google Scholar 

  • Mehrnia MR, Towfighi J, Bonakdarpour B, Akbarnegad MM (2004) Influence of top-section design and draft-tube height on the performance of airlift bioreactors containing water-in-oil microemulsion. J Chem Technol Biotechnol 79:260–267

    CAS  Google Scholar 

  • Mezcua M, Fernandez-Alba AR, Rodriguez A, Boltes K, Leton P, Garcia-Calvo E (2007) Chromatographic methods applied in the monitoring of biodesulfurization processes—state of the art. Talanta 73:103–114

    CAS  Google Scholar 

  • Mezcua M, Fernandez-Alba AR, Boltes K, Del Aguila RA, Leton P, Rodriguez A, Garcia-Calvo E (2008) Determination of PASHs by various analytical techniques based on gas chromatography–mass spectrometry application to a biodesulfurization process. Talanta 75:1158–1166

    CAS  Google Scholar 

  • Miao-dong W, Wei L, Yao S, Da-hui W, Hai F (2006) Effects of surfactant on biodesulfurization by Corynebacterium sp. ZD-1 in the presence of organic phase. J Zhejiang Univ Sci A 7(Suppl. II): 371–375

    Google Scholar 

  • Mirgorodskaya OA, Kozmin YP, Titov MI, Korner R, Sonksen CP, Roepstorff P (2000) Quantitation of peptides and proteins by matrixassisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun Mass Spectrom 14:1226–1232

    CAS  Google Scholar 

  • Mohebali G, Ball AS, Rasekh B, Kaytash A (2007) Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme Microb Technol 40:578–584

    CAS  Google Scholar 

  • Mohebali G, Ball AS, Kaytash A, Rasekh B (2008) Dimethyl sulfoxide (DMSO) as the sulfur source for the production of desulfurizing resting cells of Gordonia alkanivorans RIPI90A. Microbiology 154:878–885

    CAS  Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546

    CAS  Google Scholar 

  • Monticello DJ, Finnerty WR (1985) Microbial desulfurization of fossil fuels. Ann Rev Microbiol 39:371–389

    CAS  Google Scholar 

  • Nandi S (2010) Biodesulfurization of hydro-desulfurized diesel in airlift reactor. J Sci Ind Res 69:543–547

    CAS  Google Scholar 

  • Nichols PD, Guckert JB, White DC (1986) Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55

    CAS  Google Scholar 

  • Nomura N, Takada M, Okada H, Shinohara Y, Nakajima-Kambe T, Nakahara T, Uchiyama H (2005) Identification and functional analysis of genes required for desulfurization of alkyl dibenzothiophenes of Mycobacterium sp. G3. J Biosci Bioeng 100:398–402

    CAS  Google Scholar 

  • Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63:1–9

    CAS  Google Scholar 

  • Ohshiro T, Ishii Y, Matsubara T, Ueda K, Izumi Y, Kino K, Kirimura K (2005) Dibenzothiophene Desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J Biosci Bioeng 100:266–273

    CAS  Google Scholar 

  • Papizadeh M, Ardakani MR, Ebrahimipour G, Motamedi H (2010) Utilization of dibenzothiophene as sulfur source by Microbacterium sp. NISOC-06. World J Microbiol Biotechnol 26:1195–1200

    CAS  Google Scholar 

  • Pope CA III, Bates DV, Raizenne ME (1995) Health effects of particulate air pollution: time for reassessment? Environ Health Perspect 103:472–480

    Google Scholar 

  • Raheb J, Hajipour MJ, Saadati M, Rasekh B, Memari B (2009) The enhancement of biodesulfurization activity in a novel indigenous engineered Pseudomonas putida. Iranian Biomed J 13(4):207–213

    CAS  Google Scholar 

  • Rashtchi M, Mohebali GH, Akbarnejad MM, Towfighi J, Rasekh B, Keytash A (2006) Analysis of biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochem Eng J 29:169–173

    CAS  Google Scholar 

  • Saxena A, Tripathi BP, Kumar M, Shahi VK (2009) Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interface Sci 145:1–22

    CAS  Google Scholar 

  • Shavandi M, Sadeghizadeh M, Zomorodipour A, Khajeh K (2009) Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresour Technol 100:475–479

    CAS  Google Scholar 

  • Smith SJ, Pitcher H, Wigley TML (2001) Global and regional anthropogenic sulfur dioxide emissions. Global Planet Change 29:99–119

    Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    CAS  Google Scholar 

  • Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86:211–263

    CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnol Adv 29:896–907

    CAS  Google Scholar 

  • Takada M, Nomura N, Okada H, Nakajima-Kambe T, Nakahara T, Uchiyama H (2005) De-repression and comparison of oil–water separation activity of the dibenzothiophene desulfurizing bacterium, Mycobacterium sp. G3. Biotechnol Lett 27:871–874

    CAS  Google Scholar 

  • Tanaka Y, Matsui T, Konishi J, Maruhashi K, Kurane R (2002) Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl Microbiol Biotechnol 59:325–328

    CAS  Google Scholar 

  • Tangaromsuk J, Borole AP, Kruatrachue M, Pokethitiyook P (2008) An integrated biodesulfurization process, including inoculum preparation, desulfurization and sulfate removal in a single step, for removing sulfur from oils. J Chem Technol Biotechnol 83:1375–1380

    CAS  Google Scholar 

  • Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609

    CAS  Google Scholar 

  • Ting M, Shanshan L, Guoqiang L, Renjing W, Fenglai L, Rulin L (2006) Cloning and expressing DBT (dibenzothiophene) monooxygenase gene (dsz C) from Rhodococcus sp. DS-3 in Escherichia coli. Front Biol China 4:375–380

    Google Scholar 

  • Torkamani S, Shayegan J, Yaghmaei S, Alemzadeh I (2008) Study of the first isolated fungus capable of heavy crude oil biodesulfurization. Ind Chem Eng Res 47:7476–7482

    CAS  Google Scholar 

  • Ware JH, Thibodeau LA, Speizer FE, Colome S, Ferris BG Jr (1981) Assessment of the health effects of atmospheric sulfur oxides and particulate matter: evidence from observational studies. Environ Health Perspect 41:255–276

    CAS  Google Scholar 

  • Whitehurst DD, Isoda T, Mochida I (1998) Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds. Adv Catal 42:345–471

    CAS  Google Scholar 

  • Wubbeler JH, Lutke-Eversloh T, Van Trappen S, Vandamme P, Steinbuchel A (2006) Tetrathiobacter mimigardefordensis sp. nov., isolated from compost, a betaproteobacterium capable of utilizing the organic disulfide 3,3′-dithiodipropionic acid. Int J Syst Evol Microbiol 56:1305–1310

    Google Scholar 

  • Xiong X, Xing J, Li X, Bai X, Li W, Li Y, Liu H (2007) Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol 73:2394–2397

    CAS  Google Scholar 

  • Yang J, Marison IW (2005) Two-stage process design for the biodesulphurisation of a model diesel by a newly isolated Rhodococcus globerulus DAQ3. Biochem Eng J 27:77–82

    CAS  Google Scholar 

  • Yang J, Hu Y, Zhao D, Wang S, Lau PCK, Marison IW (2007) Two-layer continuous-process design for the biodesulfurization of diesel oils under bacterial growth conditions. Biochem Eng J 37:212–218

    CAS  Google Scholar 

  • Yu B, Ma C, Zhou W, Wang Y, Cai X, Tao F, Zhang Q, Tong M, Qu J, Xu P (2006a) Microbial desulfurization of gasoline by freewhole-cells of Rhodococcus erythropolis XP. FEMS Microbiol Lett 258:284–289

    CAS  Google Scholar 

  • Yu B, Xu P, Shi Q, Ma C (2006b) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72:54–58

    CAS  Google Scholar 

  • Zhang H, Shan G, Liu H, Xing J (2007a) Surface modification of γ-Al2O3 nano-particles with gum arabic and its applications in adsorption and biodesulfurization. Surf Coat Technol 201:6917–6921

    CAS  Google Scholar 

  • Zhang Q, Tong MY, Li YS, Gao HJ, Fang XC (2007b) Extensive desulfurization of diesel by Rhodococcus erythropolis. Biotechnol Lett 29:123–127

    Google Scholar 

Download references

Acknowledgments

The author wishes to extend his appreciation to King Fahd University of Petroleum and Minerals for providing the avenue for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulmumin A. Nuhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuhu, A.A. Bio-catalytic desulfurization of fossil fuels: a mini review. Rev Environ Sci Biotechnol 12, 9–23 (2013). https://doi.org/10.1007/s11157-012-9267-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-012-9267-x

Keywords

Navigation