Skip to main content
Log in

Capacity of hyperthermophilic Crenarchaeota for decomposition of refractory proteins (α- and β-keratins)

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Anaerobic thermophilic archaea of the genera Thermogladius and Desulfurococcus capable of α- and β-keratin decomposition were isolated from hot springs of Kamchatka and Kunashir Island. For two of them (strains 2355k and 3008g), the presence of high-molecular mass, cell-bound endopeptidases active against nonhydrolyzed and partially hydrolyzed proteins at high values of temperature and pH was shown. Capacity for β-keratin decomposition was also found in collection strains (type strains of Desulfurococcus amylolyticus subsp. amylolyticus, D. mucosus subsp. mobilis, and D. fermentans).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibardi, L., Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes, J. Exp. Zool. B: Mol. Dev. Evol., 2003, vol. 298, pp. 12–41.

    Article  Google Scholar 

  2. Maderson, P.F., Rabinowitz, T., Tandler, B., and Alibardi, L., Ultrastructural contributions to an under-standing of the cellular mechanisms involved in lizard skin shedding with comments on the functions and evolution of a unique lepidosaurian phenomenon, J. Morphol., 1998, vol. 236, pp. 1–24.

    Article  Google Scholar 

  3. Dalla Valle, L., Nardi, A., Belvedere, P., Toni, M., and Alibardi, L., Betakeratins of differentiating epidermis of snake show that they are glycine-proline-rich proteins with an avian-like gene organization, Dev. Dyn., 2007, vol. 236, pp. 1939–1953.

    Article  CAS  PubMed  Google Scholar 

  4. Brandelli, A., Daroit, D.J., and Riffel, A., Biochemical features of microbial keratinases and their production and applications, Appl. Microbiol. Biotechnol., 2010, vol. 85, pp. 1735–1750.

    Article  CAS  PubMed  Google Scholar 

  5. Onifade, A.A., Al-Sane, N.A., Al-Musallam, A.A., and Al-Zarban, S., Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources, Bioresour. Technol., 1998, vol. 66, pp. 1–11.

    Article  CAS  Google Scholar 

  6. Brandelli, A., Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond, Food Bioprocess. Technol., 2008, vol. 1, pp. 105–116.

    Article  Google Scholar 

  7. Ghosh, A., Chakrabarti, K., and Chattopadhyay, D., Cloning of feather-degrading minor extracellular protease from Bacillus cereus DCUW: dissection of the structural domains, Microbiology (UK), 2009, vol. 155, pp. 2049–2057.

    Article  CAS  Google Scholar 

  8. Nam, G.W., Lee, D.W., Lee, H.S., Lee, N.J., Kim, B.C., Choe, E.A., Hwang, J.K., Suhartono, M.T., and Pyun, Y.R., Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase producing thermophilic anaerobe, Arch. Microbiol., 2002, vol. 178, pp. 538–547.

    Article  CAS  PubMed  Google Scholar 

  9. Moallaei, H., Zaini, F., Larcher, G., Beucher, B., and Bouchara, J.P., Partial purification and characterization of a 37 kDa extracellular proteinase from Trichophyton vanbreuseghemii, Mycopathologia, 2006, vol. 161, pp. 369–375.

    Article  CAS  PubMed  Google Scholar 

  10. Nouripour-Sisakht, S., Rezaei-Matehkolaei, A., Abastabar, M., Najafzadeh, M.J., Ahmadi, B., and Hosseinpour, L., Microsporum fulvum, an ignored pathogenic dermatophyte: a new clinical isolation from Iran, Mycopathologia, 2013, vol. 176, pp. 157–160.

    Article  PubMed  Google Scholar 

  11. Cao, L., Tan, H., Liu, Y., Xue, X., and Zhou, S., Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather, Lett. Appl. Microbiol., 2008, vol. 46, pp. 389–394.

    Article  CAS  PubMed  Google Scholar 

  12. Tsiroulnikov, K., Rezai, H., Bonch-Osmolovskaya, E., Nedkov, P., Gousterova, A., Cueff, V., Godfroy, A., Barbier, G., Mutro, F., Chobert, J.-M., Clayette, P., Dormont, D., Grosclaude, J., and Haertle, T., Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and streptomyces subspecies, J. Agric. Food Chem., 2004, vol. 52, pp. 6353–6360.

    Article  CAS  PubMed  Google Scholar 

  13. Kublanov, I.V., Bidjieva, S.Kh., Mardanov, A.V., and Bonch-Osmolovskaya, E.A., Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1743–1747.

    Article  CAS  PubMed  Google Scholar 

  14. Kublanov, I.V., Perevalova, A.A., Slobodkina, G.B., Lebedinsky, A.V., Bidzhieva, S.Kh., Kolganova, T.V., Rumsh, L.D., Haertle, T., and Bonch-Osmolovskaya, E.A., Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka, Appl. Environ. Microbiol., 2009, vol. 75, pp. 286–291.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Widdel, F. and Bak, F., Gram-negative mesophilic sulfate-reducing bacteria, in The Prokaryotes, 2nd ed., Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H., Eds., New York: Springer, 1992, pp. 3352–3378.

    Chapter  Google Scholar 

  16. Perevalova, A.A., Svetlichny, V.A., Kublanov, I.V., Chernyh, N.A., Kostrikina, N.A., Tourova, T.P., Kuznetsov, B.B., and Bonch-Osmolovskaya, E.A., Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 995–999.

    Article  CAS  PubMed  Google Scholar 

  17. Park, D., Genomic DNA isolation from different biological materials, in Protocols for Nucleic Acid Analysis by Nonradioactive Probes, 2nd ed., Hilario, E. and Mackay, J., Eds., Totowa: Humana, 2007, vol. 353, pp. 3–13.

    Chapter  Google Scholar 

  18. Sokolova, T.G., Kostrikina, N.A., Chernyh, N.A., Tourova, T.P., Kolganova, T.V., and Bonch-Osmolovskaya, E.A., Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring, Int. J. Syst. Evol. Microbiol., 2002, vol. 59, pp. 1961–1967.

    Article  Google Scholar 

  19. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bidzhieva, S.Kh., Perevalova, A.A., Podosokorskaya, O.A., Lebedinsky, A.V., and Bonch-Osmolovskaya, E.A., Metabolic diversity of Desulfurococcus spp. and reclassification of Desulfurococcus kamchatkensis as Desulfurococcus amylolyticus subsp. kamchatkens, 12th Thermophiles, Regensburg, 2013, p. 82.

    Google Scholar 

  21. Kublanov, I.V., New anaerobic thermophilic prokaryotes and their hydrolytic enzymes, Cand. Sci. (Biol.) Dissertation, Moscow: Institute of Microbiology. 2007.

    Google Scholar 

  22. Mardanov, A.V., Kochetkova, T.V., Beletsky, A.V., Bonch-Osmolovskaya, E.A., Ravin, N.V., and Skryabin, K.G., Complete genome sequence of the hyperthermophilic cellulolytic crenarchaeon “Thermogladius cellulolyticus” 1633, J. Bacteriol., 2012, vol. 194, no. 16, pp. 4446–4447.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kashefi, K., Extremophiles. Microbiology and biotechnology, in Hyperthermophiles: Metabolic Diversity and Biotechnological Applications, Anitori, R.P, Ed., Norfolk: Caister Academic, 2012, pp. 183–231.

    Google Scholar 

  24. Gradisar, H., Friedrich, J., Krizaj, I., and Jerala, R., Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases, Appl. Environ. Microbiol., 2005, vol. 71, pp. 3420–3426.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kojima, M., Kanai, M., Tominaga, M., Kitazume, S., Inoue, A., and Horikoshi, K., Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01, Extremophiles, 2006, vol. 10, pp. 229–235.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta, R., Sharma, R., and Beg, Q.K., Revisiting microbial keratinases: next generation proteases for sustainable biotechnology, Crit. Rev. Biotechnol., vol. 33, no. 2, pp. 216–228.

  27. Friedrich, A.B. and Antranikian, G., Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales, Appl. Environ. Microbiol., 1996, vol. 62, pp. 2875–2882.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Riessen, S. and Antranikian, G., Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity, Extremophiles, 2001, vol. 5, pp. 399–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kh. Bidzhieva.

Additional information

Original Russian Text © S.Kh. Bidzhieva, K.S. Derbikova, I.V. Kublanov, E.A. Bonch-Osmolovskaya, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 6, pp. 743–751.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidzhieva, S.K., Derbikova, K.S., Kublanov, I.V. et al. Capacity of hyperthermophilic Crenarchaeota for decomposition of refractory proteins (α- and β-keratins). Microbiology 83, 880–887 (2014). https://doi.org/10.1134/S0026261714060034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714060034

Keywords

Navigation