Skip to main content
Log in

Growth relationships of a lipid-producing Chlorella-alga with common microalgae in laboratory co-cultures

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Co-existence growth relationships were studied in communities consisting of a lipid-producing alga Chlorella sp. HQ, another green alga and one cyanobacterium: I Scenedesmus obliquus and Microcystis aeruginosa; II Chlamydomonas reinhardtii and Anabaena flos-aquae; III Selenastrum capricornutum and Microcystis wesenbergii. The cyanobacteria and green algae except for Chlorella sp. HQ were commonly detected in Chinese reservoir and wastewater. The rate of increase of apparent cell number difference with other algae (k app), inhibition/stimulation ratio (ISR) and the parameters of logistic model and co-existence model were determined for Chlorella. Chlorella strains were the most competitive in Combination I, and were stimulated during 75% of the cultivation time for all three combinations. Anabaena growth exceeded those of Chlorella and Chlamydomonas on the 5th cultivation day under 1 : 1 : 1 inoculum ratio. Scenedesmus colonies consisted of fewer cells, whose average length significantly shortened after the 5th cultivation day under 1 : 1 : 1 inoculum ratio. The developed co-existence model can identify the concrete growth inhibitor or stimulator among three species compared with the single method of cell number monitoring. Good correlation was found between transformed and non-transformed co-existence model through a mn and b mn values. Allelopathy and nutrient competition are both possible mechanisms in the above growth relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fistarol, G.O., Legrand, C., Selander, E., Hummert, C., Stolte, W., and Granéli, E., Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures, Aquat. Microb. Ecol., 2004, vol. 35, pp. 45–56.

    Article  Google Scholar 

  2. Flöber, S., Combüchen, A., Pasternak, A., and Hillebrand, H., Competition between pelagic and benthic microalgae for phosphorus and light, Aquat. Sci., 2006, vol. 68, no. 4, pp. 425–433.

    Article  Google Scholar 

  3. Whitcraft, C.R., and Levin, L.A., Regulation of benthic algal and animal communities by salt marsh plants: impact of shading, Ecology, 2007, vol. 88, no. 4, pp. 904–917.

    Article  PubMed  Google Scholar 

  4. Zak, A., Musiewicz, K., and Kosakowska, A., Allelopathic activity of the Baltic cyanobacteria against microalgae, Estuar. Coast Shelf Sci., 2012, vol. 112, pp. 4–10.

    Article  CAS  Google Scholar 

  5. Hai, D., Lam, N., and Dippner, J.W., Development of Phaeocystis globosa blooms in the upwelling waters of the South Central coast of Viet Nam, J. Marine Syst., 2010, vol. 83, no. 3, pp. 253–261.

    Article  Google Scholar 

  6. Jaiswal, P., Prasanna, R., and Singh, P. K., Characterization of the biocidal spectrum of extracellular filtrates of Microcystis aeruginosa, Indian J. Microbiol., 2011, vol. 51, no. 4, pp. 509–514.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Xiao, R., Chen, R., Zhang, H.Y., and Li, H., Microalgae Scenedesmus quadricauda grown in digested wastewater for simultaneous CO2 fixation and nutrient removal, J. Biobased Mater. Bioenergy, 2011, vol. 5, no. 2, pp. 234–240.

    Article  CAS  Google Scholar 

  8. Abdel-Raouf, N., Al-Homaidan, A.A., and Ibraheem, I.B.M., Microalgae and wastewater treatment, Saudi J. Biol. Sci., 2012, vol. 19, no. 3, pp. 257–275.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Verma, N.M., Mehrotra, S., Shukla, A., and Mishra, B.N., Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion, Afr. J. Biotechnol., 2010, vol. 9, no. 10, pp. 1402–1411.

    CAS  Google Scholar 

  10. Hong, Y., and Xu, K., Co-existing growth relationships of a lipid-producing alga with three microalgae, Allelopathy J., 2013, vol. 32, no. 2, pp. 301–314.

    Google Scholar 

  11. Yang, J., Li, X., Hu, H.Y., Zhang, X., Yu, Y., and Chen, Y.S., Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents, Appl. Energy, 2011, vol. 88, no. 10, pp. 3295–3299.

    Article  CAS  Google Scholar 

  12. Li, X., Coupled technology of advanced N, P removal in wastewater treatment and microalgal bioenergy production, Ph.D. Dissertation, Tsinghua University, Beijing: China, 2011.

    Google Scholar 

  13. He, F., Deng, P., Wu, X.H., Cheng, S.P., Gao, Y.N., and Wu, Z.B., Allelopathic effects on Scenedesmus obliquus by two submerged macrophytes Najas minor and Potamogeton malaianus, Fresenius Environ. Bull., 2008, vol. 17, pp. 92–97.

    CAS  Google Scholar 

  14. Hong, Y. and Hu, H.Y., Effects of the aquatic extracts of Arundo donax L. on the growth of freshwater algae, Allelopathy J., 2007, vol. 20, no. 2, pp. 315–325.

    Google Scholar 

  15. Hong, Y., Huang, J.J., and Hu, H.Y., Effects of a novel allelochemical ethyl 2-methyl acetoacetate (EMA) on the ultrastructure and pigment composition of cyanobacterium Microcystis aeruginosa, Bull. Environ. Contam. Toxicol., 2009, vol. 83, no. 4, pp. 502–508.

    Article  CAS  PubMed  Google Scholar 

  16. Perron, M., Qiu, B. S., Boucher, N., Bellemare, F., and Juneau, P., Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae, Toxicon, 2012, vol. 59, pp. 567–577.

    Article  CAS  PubMed  Google Scholar 

  17. Babica, P., Hilscherová, K., Bártová, K., Bláha, L., and Maršálek, B., Effects of dissolved microcystins on growth of planktonic photoautotrophs, Phycologia, 2007, vol. 46, no. 2, pp. 137–142.

    Article  Google Scholar 

  18. Yang, Z., Kong, F.X., Shi, X.L., and Yang, J. X., Effects of Branchionus calyciflorus culture media filtrate on Microcystis aeruginosa, Scenedesmus obliquus and Chlorella vulgaris colony formation and growth, Chin. J. Appl. Ecol., 2005, vol. 16, no. 6, pp. 1138–1141.

    Google Scholar 

  19. El-Sheekh, M.M., Khairy, H.M., and ElShenody, R.A., Allelopathic effects of cyanobacterium Microcystis aeruginosa Kützing on the growth and photosynthetic pigments of some algal species, Allelopathy J., 2010, vol. 26, no. 2, pp. 275–289.

    Google Scholar 

  20. Huyskens-Keil, S., Prono-Widayat, H., Lüdders, P., and Schreiner, M., Postharvest quality of pepino (Solanum muricatum Ait.) fruit in controlled atmosphere storage, J. Food Eng., 2006, vol. 77, no. 3, pp. 628–634.

    Article  CAS  Google Scholar 

  21. Zhang, T.T., Wang, L.L., He, Z.X., and Zhang, D.A., Growth inhibition and biochemical changes of cyanobacteria induced by emergent macrophyte Thalia dealbata roots, Biochem. Syst. Ecol., 2011, vol. 39, no. 2, pp. 88–94.

    Article  Google Scholar 

  22. Mur, L.R., Some aspects of the ecophysiology of cyanobacteria, Ann. Microbiol., 1983, vol. 134, no. 1, pp. 61–72.

    Google Scholar 

  23. Wood, S.A., Prentice, M.J., Smith, K., and Hamilton, D.P., Low dissolved inorganic nitrogen and increased heterocyte frequency: precursors to Anabaena planktonica blooms in a temperate, eutrophic reservoir, J. Plankton Res., 2010, vol. 32, no. 9, pp. 1315–1325.

    Article  CAS  Google Scholar 

  24. Wang, H., Zhang, W., Chen, L., Wang, J.F., and Liu, T.Z., The contamination and control of biological pollutants in mass cultivation of microalgae, Biores. Technol., 2013, vol. 128, pp. 745–750.

    Article  CAS  Google Scholar 

  25. Park, Y., Je, K.W., Lee, K., Jung, S.E., and Choi, T.J., Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga, Hydrobiologia, 2008, vol. 598, no. 1, pp. 219–228.

    Article  CAS  Google Scholar 

  26. Yin, X.W., Liu, P.F., Zhu, S.S., and Chen, X.X., Food selectivity of the herbivore Daphnia magna (Cladocera) and its impact on competition outcome between two freshwater green algae, Hydrobiologia, 2010, vol. 655, pp. 15–23.

    Article  Google Scholar 

  27. Qian, S.Q., Kong, F.X., Shi, X.L., Zhang, M., Tan, X., and Yang, Z., Interspecific interaction between Microcystis aeruginosa and Chlorella pyrenoidosa in different phosphate media, J. Freshwater Ecol., 2008, vol. 23, no. 4, pp. 635–642.

    Article  Google Scholar 

  28. DellaGreca, M., Zarrelli, A., Fergola, P., Cerasuolo, M., Pollio, A., and Pinto, G., Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: experiments and modeling, J. Chem. Ecol., 2010, vol. 36, no. 3, pp. 339–349.

    Article  CAS  PubMed  Google Scholar 

  29. Li, J., Glibert, P.M., Alexander, J. A., and Molina, M.E., Growth and competition of several harmful dinoflagellates under different nutrient and light conditions, Harmful Algae, 2012, vol. 13, pp. 112–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Hong.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Xu, K. & Zhan, J. Growth relationships of a lipid-producing Chlorella-alga with common microalgae in laboratory co-cultures. Microbiology 83, 366–375 (2014). https://doi.org/10.1134/S0026261714040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714040055

Keywords

Navigation