Skip to main content

Advertisement

Log in

Food selectivity of the herbivore Daphnia magna (Cladocera) and its impact on competition outcome between two freshwater green algae

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater green algae, Chlorella, have heavy cell walls and their size usually exceeds the lower limits of limb size of herbivorous Daphnia (Cladocera). According to the optimal foraging theory, we speculated that Daphnia would graze more exposed and relatively large Clamydomonas rather than Chlorella, and this process would lead to small-sized Chlorella becoming a superior competitor in the presence of Daphnia. We used Daphnia magna, Clamydomonas sajao and Chlorella pyrenoidosa to test this hypothesis. Our grazing experiments showed that Daphnia preferred C. sajao to C. pyrenoidosa, regardless of the concentration and relative abundance of these two algae. The decrease in relative abundance of high-quality Clamydomonas in Clamydomonas–Chlorella assemblages did not diminish the grazing efficiency of Daphnia on this algal species, but increased selectivity of low-quality Chlorella. However, when the concentration of Clamydomonas was extremely high, the grazing of Daphnia on Clamydomonas decreased. In competition experiments, we observed that the presence of Clamydomonas restrained the growth potential of Chlorella; however, the introduction of herbivorous Daphnia into the competing environment weakened this influence and to some extent enhanced the growth ability of Chlorella. Moreover, we also observed that the intensity of herbivory, imposed by different densities of Daphnia, had an obvious influence on the competition outcome between Clamydomonas and Chlorella. At the highest intensity of herbivory (10 Daphnia), C. sajao was eliminated from the culture medium whereas C. pyrenoidosa could persist, but at low cell density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahlgren, G., L. Lundstedt, M. Brett & C. Forsberg, 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankton. Journal of Plankton Research 12: 809–818.

    Article  CAS  Google Scholar 

  • Bergquist, A. M., S. R. Carpenter & J. C. Latino, 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnology and Oceanography 30: 1037–1045.

    Article  Google Scholar 

  • Bleiwas, A. H. & P. M. Stokes, 1985. Collection of large and small food particles by Bosmina. Limnology and Oceanography 30: 1090–1092.

    Article  Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1984. Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Sciences USA 81: 6427–6431.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A. & L. J. Borowitzka, 1988. Mirco-algal biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Boyd, C. M., 1976. Selection of particle sizes by filter-feeding copepods: a plea for reason. Limnology and Oceanography 21: 175–180.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of the plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Chase, J. M., P. A. Abrams, J. P. Grover, S. Diehl, P. Chesson, R. D. Holt, S. A. Richards, R. M. Nisbet & T. J. Case, 2002. The interaction between predation and competition: a review and synthesis. Ecology Letter 5: 302–315.

    Article  Google Scholar 

  • DeMott, W. R., 1982. Feeding selectivity and relative ingestion rates of Daphnia and Bosmina. Limnology and Oceanography 27: 518–527.

    Article  Google Scholar 

  • DeMott, W. R., 1989. Optimal foraging theory as a predictor of chemically mediated food selection by suspension-feeding copepods. Limnology and Oceanography 34: 140–154.

    Article  Google Scholar 

  • DeMott, W. R., 1993. Hunger-dependent diet selection in suspension-feeding zooplankton. In Hughes, R. N. (ed.), Diet selection: An Interdisciplinary Approach to Foraging Behavior. Blackwell, Oxford: 102–123.

    Google Scholar 

  • Edmondson, W. T., 1957. Trophic relations of the zooplankton. Transactions of the American Microscopical Society 76: 225–245.

    Article  Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography 17: 805–815.

    Article  Google Scholar 

  • Gliwicz, Z. M. & C. Guisande, 1992. Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oecologia 91: 463–476.

    Article  Google Scholar 

  • Hartmann, H. J. & D. D. Kunkel, 1991. Mechanisms of food selection in Daphnia. Hydrobiologia 225: 129–154.

    Article  Google Scholar 

  • Herbert, P. D., 1978. The population biology of Daphnia (Crustacea, Daphnidae). Biological Reviews 53: 387–426.

  • Hu, S. H. & D. Y. Zhang, 1993. The effects of initial population density on the competition for limiting nutrients in two freshwater algae. Oecologia 96: 569–574.

    Article  Google Scholar 

  • Huisman, J., R. R. Jonker, C. Zonneveld & F. J. Weissing, 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211–222.

    Article  Google Scholar 

  • Hyenstrand, P., U. Burkert, A. Pettersson & P. Blomqvist, 2000. Competition between the green alga Scenedesmus and the cyanobacterium Synechococcus under different modes of inorganic nitrogen supply. Hydrobiologia 435: 91–98.

    Article  Google Scholar 

  • Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86–94.

    Article  Google Scholar 

  • Lampert, W., 1974. A method for determining food selection by zooplankton. Limnology and Oceanography 19: 995–998.

    Article  Google Scholar 

  • Lampert, W., 1978. A field study on the dependence of the fecundity of Daphnia spec. on food concentration. Oecologia 36: 363–369.

    Article  Google Scholar 

  • Lampert, W. & U. Sommer, 2007. Limnoecology: The Ecology of Lakes and Streams, 2nd ed. Oxford University Press, Oxford.

    Google Scholar 

  • Lehman, J. T., 1976. The filter feeder as an optimal forager, and the predicted shapes of feeding curves. Limnology and Oceanography 21: 501–516.

    Article  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.

    Article  Google Scholar 

  • Lürling, M., G. Geest & M. Scheffer, 2006. Importance of nutrient competition and alleopathic effects in suppression of the green alga Scenedesmus obliquus by the emacrophytes Chara, Elodea and Myriophyllum. Hydrobiologia 556: 209–220.

    Article  Google Scholar 

  • Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnology and Oceanography 23: 1039–1044.

    Article  Google Scholar 

  • Plath, K., 1998. Adaptive feeding behavior of Daphnia magna in response to short-term starvation. Limnology and Oceanography 43: 593–599.

    Article  Google Scholar 

  • Porter, K. G., Y. S. Feig & E. F. Vetter, 1983. Morphology, flow regimes, and filtering rates of Daphnia, Ceriodaphnia, and Bosmina fed natural bacteria. Oecologia 58: 156–163.

    Article  Google Scholar 

  • Porter, K. G. & J. D. Orcutt Jr., 1980. Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover.

    Google Scholar 

  • Pyke, B. G., H. R. Pulliam & E. L. Charnov, 1977. Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology 52: 137–154.

    Article  Google Scholar 

  • Reichwaldt, E. S. & H. Stibor, 2005. The impact of diel vertical migration of Daphnia on phytoplankton dynamics. Oecologia 146: 50–56.

    Article  PubMed  Google Scholar 

  • Rodrigo, M. A., C. Rojo, M. Segura & J. Larrosa, 2009. Mechanisms of microalgae selection during the assembly of a planktonic community. Aquatic Ecology 43: 61–72.

    Article  Google Scholar 

  • Scavia, D., G. L. Fahnenstiel, J. A. Davis & R. G. Kreis Jr., 1984. Small-scale nutrient patchiness: some consequences and a new encounter mechanism. Limnology and Oceanography 29: 785–793.

    Article  Google Scholar 

  • Schoenberg, S. A. & A. E. Maecubbin, 1985. Relative feeding rates on free and particle-bound bacteria by freshwater macrozooplankton. Limnology and Oceanography 30: 1084–1089.

    Article  Google Scholar 

  • Sierszen, M. E., 1990. Variable selectivity and the role of nutritional quality in food selection by a planktonic rotifer. Oikos 59: 241–247.

    Article  Google Scholar 

  • Smith, R. E. & J. Kalff, 1983. Competition for phosphorus among co-occurring freshwater phytoplankton. Limnology and Oceanography 28: 448–464.

    Article  CAS  Google Scholar 

  • Stephens, D. W., J. S. Brown & R. C. Ydenberg, 2007. Foraging: Behavior and Ecology. The University of Chicago Press, Chicago.

    Google Scholar 

  • Sommer, U., 1986. Phytoplankton competition along a gradient of dilution rates. Oecologia 68: 503–506.

    Article  Google Scholar 

  • Sommer, U., 1988. Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation. Limnology and Oceanography 33: 1037–1054.

    Article  Google Scholar 

  • Tilman, D., 1977. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58: 338–348.

    Article  CAS  Google Scholar 

  • Tilman, D., 1981. Experimental tests of resource competition theory using four species of Lake Michigan algae. Ecology 62: 802–815.

    Article  Google Scholar 

  • Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.

    Google Scholar 

  • Wehr, J. D. & R. G. Sheath, 2003. Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego.

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, New York.

    Google Scholar 

  • Yin, X. W. & C. J. Niu, 2008. Predatory rotifer Asplanchna brightwellii mediated competition outcome between Brachionus calyciflorus and Brachionus patulus (Rotifera). Hydrobiologia 610: 131–138.

    Article  Google Scholar 

  • Zöllner, E., B. Santer, M. Boersma, H. G. Hoppe & K. Jürgens, 2003. Cascading predation effects of Daphnia and copepods on food web components. Freshwater Biology 48: 2174–2193.

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees for valuable and constructive comments on the manuscript. This study was supported by the Momentous Foundation of Contamination Control and Improvement of China (2008ZX07526-001), National Natural Science Foundation (31000218) of China, Science and Technology Foundation (2009A176) of Education Department of Liaoning Province and Liaoning Provincial Natural Science Foundation (20091018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang Yin.

Additional information

Handling editor: Piet Spaak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, X.W., Liu, P.F., Zhu, S.S. et al. Food selectivity of the herbivore Daphnia magna (Cladocera) and its impact on competition outcome between two freshwater green algae. Hydrobiologia 655, 15–23 (2010). https://doi.org/10.1007/s10750-010-0399-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0399-0

Keywords

Navigation