Skip to main content
Log in

Effects of a Novel Allelochemical Ethyl 2-Methyl Acetoacetate (EMA) on the Ultrastructure and Pigment Composition of Cyanobacterium Microcystis aeruginosa

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Allelochemical ethyl 2-methyl acetoacetate (EMA) can significantly inhibit the growth of bloom-forming Microcystis aeruginosa. In order to assess the implication of the damage of EMA on the algal photosynthetic apparatus, the effects of EMA on the algal ultrastructure and pigment composition were investigated. At initial exposure time to EMA (0–40 h), algal allophycocyanin, phycoerythrin and carotenoid degraded firstly; chlorophyll a increased, especially by 47% in the algae exposed to 2 mg L−1 of EMA; phycocyanin was not significantly affected; lipid bodies increased remarkably. After 40 h of EMA exposure, chlorophyll a decreased gradually, especially by 45% in the algae exposed to 4 mg L−1 of EMA; lipid bodies greatly reduced but cyanophycin granules accumulated; thylakoid structures were dissolved or disappeared with the presence of numerous vacuoles. These results showed that all ophycocyanin, phycoerythrin and carotenoid were more sensitive to EMA than other pigments, the cells of M. aeruginosa was stressed by EMA with the occurrence of cyanophycin granules and the photosynthesis pigments and ultrastructure of M. aeruginosa were quickly destroyed by EMA with exposure time increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abelson JN, Simon MI (1988) Phycobiliproteins in cyanobacteria. In: Lester P, Alexander NG (eds) Method in enzymology. Academic Press, London, p 167

    Google Scholar 

  • Allen MM, Hutchison F, Weathers PJ (1980) Cyanophycin granule polypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308. J Bacteriol 141:687–693

    CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Bryant DA (1996) The molecular biology of cyanobacteria. Kluwer Academic publishers, Amsterdam, pp 559–579

    Google Scholar 

  • Chen JZ, Liu ZL, Ren GJ, Li PF, Jiang YW (2004) Control of Microcystis aeruginosa TH01109 with batangas mandarin skin and dwarf banana peel. Water SA 30(2):279–282

    Google Scholar 

  • Einhellig FA (1995a) Allelopathy: current status and future goals. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and application. American Chemical Society, Washington DC, pp 1–24

    Google Scholar 

  • Einhellig FA (1995b) Mechanism of action of allelochemicals in allelopathy. In: Inderjit Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and application. American Chemical Society, Washington DC, pp 96–116

    Google Scholar 

  • Eullaffroy P, Vernet G (2003) The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae. Water Res 37(9):1983–1990

    Article  CAS  Google Scholar 

  • Gerasimenko LM, Pusheva MA, Goryunova SV (1972) Developmental cycle of and ultrastructure of Cyanidium caldarium. Microbiology 41:324–326

    CAS  Google Scholar 

  • Goodwin TW (1971) Biosynthesis by chloroplasts. In: Gibbs M (ed) Structure and function of chloroplasts. Springer, Berlin, pp 215–276

    Google Scholar 

  • Grobe CW, Murphy TM (1998) Solar ultraviolet-B radiation effects on growth and pigment composition of the intertidal alga Ulva expansa (Setch.) S.&G. (Chlorophyta). J Exp Mar Biol Ecol 225:39–51

    Article  CAS  Google Scholar 

  • Hong Y, Hu HY, Xie X, Li FM (2008) Responses of enzymatic antioxidants and non-enzymatic antioxidants in cyanobacterium Microcystis aeruginosa to allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis). J Plant Physiol 165(12):1264–1273

    Article  CAS  Google Scholar 

  • Huang JJ, Kolodny NH, Redfearn JT, Allen MM (2002) The acid stress response of the cyanobacterium Synechocystis sp strain PCC 6308. Arch Microbiol 177(6):486–493

    Article  CAS  Google Scholar 

  • Li FM, Hu HY (2005) Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl Environ Microbiol 71(11):6545–6553

    Article  CAS  Google Scholar 

  • Nakai S, Yamada S, Hosomi M (2005) Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia 543:71–78

    Article  CAS  Google Scholar 

  • Nakai S, Zhou S, Hosomi M, Tominaga M (2006) Allelopathic growth inhibition of cyanobacteria by reed. Allelopathy J 18(2):277–285

    Google Scholar 

  • Padgett MP, Krogmann DW (1987) Large scale preparation of pure phycobiliproteins. Photosynth Res 11:225–235

    Article  CAS  Google Scholar 

  • Pan G, Zhang MM, Chen H, Zou H, Yan H (2006) Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ Pollut 141(2):195–200

    Article  CAS  Google Scholar 

  • Papageorgiou GC (1996) The photosynthesis of cyanobacteria (blue bacteria) from the perspective of signal analysis of chlorophyll alpha fluorescence. J Sci Ind Res India 55(8–9):596–617

    CAS  Google Scholar 

  • Pollio A, Pinto G, Ligrone R, Aliotta G (1993) Effects of the potential allelochemical α-asarone on growth, physiology and ultrastructure of two unicellular green algae. J Appl Phycol 5:395–403

    Article  CAS  Google Scholar 

  • Romanowska-Duda Z, Mankiewicz J, Tarczynska M, Walter Z, Zalewski M (2002) The effect of toxic cyanobacteria (blue-green algae) on water plants and animal cells. Pol J Environ Stud 11(5):561–566

    Google Scholar 

  • Sarcina M, Tobin MJ, Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942 – Effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem 276(50):46830–46834

    Article  CAS  Google Scholar 

  • Stransky H, Hager A (1970) Das carotenoidimuster and die Verbreitung des lichtinduzierten Xanthophyllcyclus in Verschiedenen Algenklassen. IV. Cyanophyceae and Rhodophyceae. Arch Mikrobiol 72:84–96

    Article  CAS  Google Scholar 

  • Wu JT, Kuo-Huang LL, Lee J (1998) Algicidal effect of Peridinium bipes on Microcystis aeruginosa. Curr Microbiol 37(4):257–261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Beijing Forestry University Young Scientist Fund (No. BLX2008025), National Natural Science Foundation of China-Japan Science and Technology Agency (NSFC-JST) Joint Project (No. 50721140017), Support Project (Nansi Lake) (No. 2006BAC10B03) and National Science Fund for Distinguished Young Scholars (No. 50825801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Hong or Hong-Ying Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., Huang, JJ. & Hu, HY. Effects of a Novel Allelochemical Ethyl 2-Methyl Acetoacetate (EMA) on the Ultrastructure and Pigment Composition of Cyanobacterium Microcystis aeruginosa . Bull Environ Contam Toxicol 83, 502–508 (2009). https://doi.org/10.1007/s00128-009-9795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-009-9795-4

Keywords

Navigation