Skip to main content
Log in

Evaluation of the diversity of nitrogen-fixing bacteria in soybean rhizosphere by nifH gene analysis

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Biological nitrogen fixation plays an important role in the nitrogen balance of agricultural ecosystems and provides an essential part of nitrogen nutrition for plants, even in conditions of intensive fertilization. The main agrobiotechnological method for soybean cultivation (Glycine max (L.) Merril) is an application of microbial preparations based on Bradyrhizobium japonicum. Successful inoculation strongly depends on the interactions between the introduced microorganism and the aboriginal rhizosphere microorganisms. To evaluate the composition of diazotrophic communities, a study of the diversity of the molecular marker for nitrogen fixation, the nifH gene, in the samples of soybean rhizosphere soil was carried out. Experiments were performed in the variants when soybean was cultivated without inoculation and after adding bacterial preparations, as well as in enrichment cultures of diazotrophs. The revealed diazotrophic microorganisms demonstrated low level of similarity to the known microorganisms (74–95% identity by nucleotides), and were identified as species of the phyla Firmicutes and Proteobacteria. In the composition of nitrogen-fixing communities in the rhizosphere soil, the microorganisms of the genera Clostridium, Paenibacillus, and Spirochaeta were shown to prevail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peoples, M.B., Herridge, D.F., and Ladha, J.K., Biological Nitrogen Fixation: An Efficient Source of Nitrogen for Sustainable Agricultural Production, Plant Soil, 1995, vol. 174, pp. 3–28.

    Article  CAS  Google Scholar 

  2. Dorosinskii, L.M., Kluben’kovye bakterii i nitragin (Root Nodule Bacteria and Nitragin), Leningrad: Kolos, 1970.

    Google Scholar 

  3. Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: Molekulyarnaya genetika agrosistem budushchego (Plant-Microorganism Symbioses: Molecular Genetics of the Future Agrosystems), St. Petersburg: St. Peterburg Gos. Univ., 2009.

    Google Scholar 

  4. Titova, L.V., Leonova, N.O., and Antipchuk, A.F., Nitrogen-Fixing Microorganisms in Microbial-Plant Systems, in Bioregulyatsiya mikrobno-rastitel’nykh sistem (Bioregulation of Microbial-Plant Systems), Iutinskaya, G.A. and Ponomarenko, S.P., Eds., Kiev: Nichlava, 2010, pp. 99–195.

    Google Scholar 

  5. Provorov, N.A., Evolution of Symbiotic Genetic Systems in Rhizobia, Russ. J. Genet., 1996, vol. 32, no. 8, pp. 891–900.

    CAS  Google Scholar 

  6. Kots’, S.Ya., Mel’nik, V.N., and Datsenko, V.K., Transposon Mutagenesis as an Efficient Method for Obtaining New Strains of Root Nodule Bacteria, Vestn. Khar’kov. Natl. Agr. Univ., 2009, no. 1(16), pp. 6–18.

  7. Biswas, J.C., Ladha, J.K., and Dazzo, F.B., Rhizobia Inoculation Improves Nutrient Uptake and Growth of Lowland Rice, Soil Sci. Soc. Amer. J., 2000, vol. 164, pp. 1644–1650.

    Article  Google Scholar 

  8. Ovreas, L. and Torsvik, V. Microbial Diversity and Community Structure in Two Different Agricultural Soil Communities, Microb, Ecol., vol. 36, pp. 303–315.

  9. Smit, E., Leeflang, G.P., and Wernars, K., Detection of Shifts in Microbial Community Structure and Diversity in Soil Caused by Copper Contamination Using Amplified Ribosomal DNA Restriction Analysis, FEMS Microbiol. Ecol., 1997, vol. 23, pp. 249–261.

    Article  CAS  Google Scholar 

  10. Henckel, T., Jäckel, U., Schnell, S., and Conrad, R., Molecular Analyses of Novel Methanotrophic Communities in Forest Soil that Oxidize Atmospheric Methane, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1801–1808.

    Article  PubMed  CAS  Google Scholar 

  11. Ludwig, W., Bauer, S.H., Bauer, M., Held, I., Kirchhof, G., Schulze, R., Huber, I., Spring, S., Hartmann, A., and Schleifer, K.H., Detection and in situ Identification of Representatives of a Widely Distributed New Bacterial Phylum, FEMS Microbiol. Lett., 1997, vol. 153, pp. 181–190.

    Article  PubMed  CAS  Google Scholar 

  12. Ohkuma, M., Noda, S., and Kudo, T., Phylogenetic Diversity of Nitrogen Fixation Genes in the Symbiotic Microbial Community in the Gut of Diverse Termites, Appl. Environ. Microbiol., 1999, vol. 65, pp. 4926–4934.

    PubMed  CAS  Google Scholar 

  13. Poly, F., Ranjard, L., Nazaret, S., Gourbère, F., and Monrozier, L.J., Comparison of nifH Gene Pools in Soils and Soil Microenvironments with Contrasting Properties, Appl. Environ. Microbiol., 2001, vol. 67, pp. 2255–2262.

    Article  PubMed  CAS  Google Scholar 

  14. Rösch, C., Mergel, A., and Bothe, H., Biodiversity of Denitrifying and Dinitrogen-Fixing Bacteria in an Acid Forest Soil, Appl. Environ. Microbiol., 2002, vol. 68, pp. 3818–3829.

    Article  PubMed  Google Scholar 

  15. Diallo, M.D., Willems, A., Vloemans, A., Cousin, S., Vandekerckhove, T.T., de Lajudie, P., Neyra, M., Vyverman, W., Gillis, M., and Van der Gucht, K., Polymerase Chain Reaction Denaturing Gradient Gel Electrophoresis Analysis of the N2-Fixing Bacterial Diversity in Soil Under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the Dryland Part of Senegal, Environ. Microbiol., 2004, vol. 6, pp. 400–415.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Li, D., Wang, H., Xiao, Q., and Liu, X., Molecular Diversity of Nitrogen-Fixing Bacteria from the Tibetan Plateau, China, FEMS Microbiol. Ecol., 2006, vol. 260, pp. 134–142.

    Article  CAS  Google Scholar 

  17. Wakelin, S.A., Colloff, M.J., Harvey, P.R., Marschner, P., Gregg, A.L., and Rogers, S., The Effects of Stubble Retention and Nitrogen Application on Soil Microbial Community Structure and Functional Gene Abundance Under Irrigated Maize, FEMS Microbiol. Ecol., 2007, vol. 59, pp. 661–670.

    Article  PubMed  CAS  Google Scholar 

  18. Sorokin, I.D., Kravchenko, I.K., Doroshenko, E.V., Boulygina, E.S., Zadorina, E.V., Tourova, T.P., and Sorokin, D.Yu., Haloaloalkaliphilic Diazotrophs in Soda Solonchak Soils, FEMS Microbiol. Ecol., 2008, vol. 65, pp. 425–433.

    Article  PubMed  CAS  Google Scholar 

  19. Zadorina, E.V., Slobodova, N.V., Bulygina, E.S., Kolganova, T.V., Kravchenko, I.K., and Kuznetsov, B.B., Analysis of the Diversity of Diazotrophic Bacteria in Peat Soil by Cloning of the nifH Gene, Microbiology, 2009, vol. 78, no. 2, pp. 218–226.

    Article  CAS  Google Scholar 

  20. Muyzer, G., de Waal, E.C., and Uitterlinde, A.G., Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA, Appl. Environ. Microbiol., 1993, vol. 59, pp. 695–700.

    PubMed  CAS  Google Scholar 

  21. Marusina, A.I., Boulygina, E.S., Kuznetsov, B.B., Tourova, T.P., Kravchenko, I.K., and Gal’chenko, V.F., A System of Oligonucleotide Primers for the Amplification of nifH Genes of Different Taxonomic Groups of Prokaryotes, Microbiology, 2001, vol. 70, no. 1, pp. 73–78.

    Article  CAS  Google Scholar 

  22. Sarita, S., Priefer, U.B., Prell, J., and Sharma, P.K., Diversity of nifH Gene Amplified from Rhizosphere Soil DNA, Current Sci., 2008, vol. 94, no. 1, pp. 109–115.

    CAS  Google Scholar 

  23. Mehta, M.P., Butterfield, D.A., and Baross, J.A., Phylogenetic Diversity of Nitrogenase (nifH) Genes in Deep-Sea and Hydrothermal Vent Environments of the Juan de Fuca Ridge, Appl. Environ. Microbiol., 2003, vol. 69, pp. 960–970.

    Article  PubMed  CAS  Google Scholar 

  24. Lovell, C.R., Piceno, Y.R., Quattro, J.M., and Bagwell, C.E., Molecular Analysis of Diazotroph Diversity in the Rhizosphere of the Smooth Cordgrass, Spartina alterniflora, Appl. Environ. Microbiol., 2000, vol. 66, no. 9, pp. 3814–3822.

    Article  CAS  Google Scholar 

  25. Katznelson, H., The “Rhizosphere Effect” of Mangels on Certain Groups of Soil Microorganisms, Soil Sci., 1946, vol. 62, pp. 343–354.

    Article  CAS  Google Scholar 

  26. Mishustin, E.N. and Emtsev, V.T., Pochvennye azotfiksiruyushchie bakterii roda Clostridium (Soil Nitrogen-Fixing Bacteria of the Genus Clostridium), Moscow: Nauka, 1974.

    Google Scholar 

  27. Til’ba, V.A. and Golodyaev, G.P., Nitrogen-Fixing Bacteria of Primorskii krai Arable Soils, in Problemy biologii na Dal’nem Vostoke (Problems of Biology in the Far East), Velikov, I.F. Eds., Vladivostok: DVF SO AN SSSR, 1966, pp. 152–170.

    Google Scholar 

  28. Boulygina, E.S., Zadorina, E.V., and Kuznetsov, B.B., Investigation of the Structure of the Arable Soil Diazotrophic Community, Agrarnaya Nauka, 2008, no. 4, pp. 13–15.

  29. Chien, Y.-T. and Zinder, S.H., Cloning, DNA Sequencing, and Characterization of a nifD-Homologous Gene from the Archaeon Methanosarcina barkeri 227 which Resembles nifD1 from the Eubacterium Clostridium pasteurianum, J. Bacteriol., 1994, vol. 176, pp. 6590–6598.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Kizilova.

Additional information

Original Russian Text © A.K. Kizilova, L.V. Titova, I.K. Kravchenko, G.A Iutinskaya, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 5, pp. 672–681.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kizilova, A.K., Titova, L.V., Kravchenko, I.K. et al. Evaluation of the diversity of nitrogen-fixing bacteria in soybean rhizosphere by nifH gene analysis. Microbiology 81, 621–629 (2012). https://doi.org/10.1134/S0026261712050116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712050116

Keywords

Navigation