Skip to main content
Log in

Metabolic resistance of a psychrotolerant VFA-oxidizing microbial community from an anaerobic bioreactor to changes in the cultivation temperature

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A psychrotolerant microbial consortium from a low-temperature anaerobic EGSB bioreactor was grown separately on acetate, propionate, butyrate, and H2/CO2 at 30 and 10°C in glass flasks. In the course of the experiments, the cultivation temperature was changed at different time intervals. The initial rates of substrate utilization were higher at 30 than at 10°C. However, the microbial consortium was found to be well adapted to low temperatures; when grown at 10°C for 1.5–5 months, the rates of butyrate, propionate, and H2/CO2 utilization increased steadily. When grown at 30°C for 1.5–2.5 months, this consortium retained its ability to degrade VFA and H2/CO2 at 10°C. However, after long-term (150 days) cultivation at 10°C, its ability to utilize the substrates at 30°C decreased. In the consortium grown in the acetate-containing medium, a Methanosaeta-like methanogen was predominant; in media with propionate and butyrate, besides VFA-degrading bacteria, acetoclastic Methanosaeta-like and hydrogenotrophic Methanospirillum-like methanogenic archaea prevailed. A Methanospirillum-like strain predominated in the H2/CO2-containing medium. The Methanospirillum strain of this microbial community was presumably psychrotolerant. A method based on changes in the cultivation temperature is of practical interest and can be used to start up new bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stams, A.J.M., Metabolic Interactions Between Anaerobic Bacteria in Methanogenic Environments, Antonie van Leeuwenhoek, 1994, vol. 66, pp. 271–294.

    Article  PubMed  CAS  Google Scholar 

  2. Schink, B., Energetics of Syntrophic Cooperation in Methanogenic Degradation, Microbiol. Mol. Biol. Rev., 1997, vol. 61, pp. 262–280.

    PubMed  CAS  Google Scholar 

  3. Schink, B. and Stams, A.J.M., Syntrophism among Prokaryotes, in The Prokaryotes, 3nd ed., Dworkin, M., Falkow, S., Rosenberg, E., Schliefer, K.H., and Stackebrandt, E., Eds., New York: Springer, 2006, vol. 2, pp. 309–335.

    Chapter  Google Scholar 

  4. McInerney, M.J., Struchtemeyer, C.G., Sieber, J., Mouttaki, H., Stams, A.J.M., Schink, B., Rohlin, L., and Gunsalus, R.P., Physiology, Ecology, Phylogeny, and Genomics of Microorganisms Capable of Syntrophic Metabolism, Ann. New York Acad. Sci., 2008, vol. 1125, pp. 58–72.

    Article  CAS  Google Scholar 

  5. Koster, I.W. and Lettinga, G., Application of the Upflow Anaerobic Sludge Bed (UASB) Process for Treatment of Complex Waste-Waters at Low Temperatures, Biotechnol. Bioeng., 1985, vol. 27, pp. 1411–1417.

    Article  PubMed  CAS  Google Scholar 

  6. Zeeman, G., Mesophilic and Psychrophilic Digestion of Liquid Manure, PhD Thesis, Wageningen, 1991.

  7. Parshina, S.N., Nozhevnikova, A.N., and Kalyuzhnyi, S.V., Decomposition of Protein Substrates by the Microflora of Pig Manure at Low Temperatures, Mikrobiologiya, 1993, vol. 62, no. 1, pp. 169–180.

    CAS  Google Scholar 

  8. Kotsyurbenko, O.R., Nozhevnikova, A.N., Kalyuzhnyi, S.V., and Zavarzin, G.A., Methane Fermentation of Cattle Manure under Psychrophilic Conditions, Mikrobiologiya, 1993, vol. 62, no. 4, pp. 761–771.

    CAS  Google Scholar 

  9. Rebac, S., Ruskova, J., Gerbens, S., van Lier, J.B., Stams, A.J.M., and Lettinga, G., High-Rate Anaerobic Treatment of Wastewater Under Psychrophilic Conditions, J. Ferment. Bioeng., 1995, vol. 80, pp. 499–506.

    Article  CAS  Google Scholar 

  10. Lettinga, G., Rebac, S., Parshina, S.N., Nozhevnikova, A.N., van Lier, J.B., and Stams, A.J.M., High-Rate Anaerobic Treatment of Wastewater at Low Temperatures, Appl. Environ. Microbiol., 1999, vol. 65, pp. 1696–1702.

    PubMed  CAS  Google Scholar 

  11. Lettinga, G., Rebac, S., and Zeeman, G., Challenge of Psychrophilic Anaerobic Wastewater Treatment, Trends Biotechnol., 2001, vol. 19, pp. 363–370.

    Article  PubMed  CAS  Google Scholar 

  12. Collins, G., Mahony, T., and O’Flaherty, V., Stability and Reproducibility of Low-Temperature Anaerobic Biological Wastewater Treatment, FEMS Microbiol. Ecol., 2005, vol. 55, pp. 449–458.

    Google Scholar 

  13. Collins, G., McHugh, S., Connaughton, S., Enright, A.M., Kearney, A., Scully, C., Mahony, T., Madden, P., and O’Flaherty, V., New Low-Temperature Applications of Anaerobic Wastewater Treatment, J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng., 2006, vol. 41, pp. 881–895.

    PubMed  CAS  Google Scholar 

  14. O’Reilly, J., Chinalia, F.A., Mahony, T., Collins, G., Wu, J., and O’Flaherty, V., Cultivation of Low-Temperature (15°C), Anaerobic, Wastewater Treatment Granules, Lett. Appl. Microbiol., 2009, vol. 49, pp. 421–426.

    Article  PubMed  Google Scholar 

  15. Pfennig, N., Anreicherungskulturen fürote und grüne Schwefelbakterien, Zbl. Bakt. I Abt. Orig. Suppl., 1965, vol. 1, pp. 179–189.

    Google Scholar 

  16. Pfenning, N. and Lippert, K.D., Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien, Arch. Microbiol., 1966, vol. 55, pp. 245–246.

    Google Scholar 

  17. Wolin, E.A., Wolin, M.J., and Wolfe, R.S., Formation of Methane by Bacterial Extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882–2886.

    PubMed  CAS  Google Scholar 

  18. Huser, B.A., Wuhrmann, K., and Zehnder, A.J.B., Methanotrix soehngenii gen. nov., a New Acetotrophic Non-Hydrogen-Oxidizing Methane Bacterium, Arch. Microbiol., 1982, vol. 132, pp. 1–9.

    Article  CAS  Google Scholar 

  19. Laanbroek, H.J., Abee, T., and Voogd, I.L., Alcohol Conversions by Desulfobulbus propionicus Lindhorst in the Presence and Absence of Sulfate and Hydrogen, Arch. Microbiol., 1982, vol. 133, pp. 178–184.

    Article  CAS  Google Scholar 

  20. Oude Elferink, S.J., Maas, R.N., Harmsen, H.J., and Stams, A.J.M., Desulforhabdus amnigenus gen. nov. sp. nov., a Sulfate Reducer Isolated from Anaerobic Granular Sludge, Arch. Microbiol., 1995, vol. 164, pp. 119–124.

    Article  PubMed  CAS  Google Scholar 

  21. Lomans, B.P., Maas, R., Luederer, R., Op den Camp, H.J.M., Pol A., van der Drift, C., and Vogels, G.D., Isolation and Characterization of Methanomethylovorans hollandica gen. nov., sp. nov., Isolated from Freshwater Sediment, a Methylotrophic Methanogen Able to Grow on Dimethyl Sulfide and Methanethiol, Appl. Environ. Microbiol., 1999, vol. 65, pp. C. 3641–3650.

    Google Scholar 

  22. Jiang, B., Parshina, S.N., van Doesburg, W., Lomans, B.P., and Stams, A.J.M., Methanomethylovorans thermophila sp. nov., a Thermophilic, Methylotrophic Methanogen from an Anaerobic Reactor Fed with Methanol, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 2465–2470.

    Article  PubMed  CAS  Google Scholar 

  23. Chauhan, A., Reddy, K.R., and Ogram, A.V., Syntrophic-Archaeal Associations in a Nutrient-Impacted Freshwater Marsh, J. Appl. Microbiol., 2006, vol. 100, pp. 73–84.

    Article  PubMed  CAS  Google Scholar 

  24. McKeon, R.M., Scully, C., Enright, A.M., Chinalia, F.A., Lee, C., Mahony, T., Collins, G., and O’Flaherty, V., Psychrophylic Methanogenic Community Development During Long-Term Cultivation of Anaerobic Granular Biofilms, ISME J., 2009, vol. 3, pp. 1231–1242.

    Article  Google Scholar 

  25. Madden, P., Chinalia, F.A., Enright, A.-M., Collins, G., and O’Flaherty, V., Perturbation-Independent Community Development in Low-Temperature Anaerobic Biological Wastewater Treatment Bioreactors, Biotechnol. Bioeng., 2010, vol. 105, pp. 79–87.

    Article  PubMed  CAS  Google Scholar 

  26. Ferry, J.G., Smith, P.H., and Wolfe, R.S., Methanospirillum, a New Genus of Methanogenic Bacteria, and Characterization of Methanospirillum hungatei sp. nov., Int. J. Syst. Bacteriol., 1974, vol. 2, pp. 465–469.

    Article  Google Scholar 

  27. Patel, G.P., Roth, L.A., Berg, L., and Clark, D.S., Characterization of a Strain Methanospirillum hungatei, Can. J. Microbiol., 1976, vol. 22, pp. 1404–1410.

    Article  PubMed  CAS  Google Scholar 

  28. Kotsyurbenko, O.R., Glagolev, M.V., Nozhevnikova, A.N., and Conrad, R., Competition Between Homoacetogenic Bacteria and Methanogenic Archaea for Hydrogen at Low Temperature, FEMS Microbiol. Ecol., 2001, vol. 38, pp. 153–159.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Parshina.

Additional information

Original Russian Text © S.N. Parshina, A.V. Ermakova, K.A. Shatilova, 2011, published in Mikrobiologiya, 2011, Vol. 80, No. 1, pp. 53–62

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parshina, S.N., Ermakova, A.V. & Shatilova, K.A. Metabolic resistance of a psychrotolerant VFA-oxidizing microbial community from an anaerobic bioreactor to changes in the cultivation temperature. Microbiology 80, 50–59 (2011). https://doi.org/10.1134/S0026261711010127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261711010127

Keywords

Navigation