Skip to main content
Log in

Peptide autoinducers in bacteria

  • Review Paper
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The review classifies and analyzes the literature data on bacterial peptide autoinducers (AIs), responsible for intra- and interspecies communication (quorum sensing) between bacterial populations. The most important families of peptide AI are discussed, including a large group of bacteriocins, subdivided into lantibiotics (class I), unmodified heat-stable bacteriocins (II), large bacteriocins with Mr > 30 kDa (III), and “circular” bacteriocins (IV), as well as CSP peptides (Competence-Stimulating Peptides), peptides with thiolactone and lactone cycles, and short tryptophan-containing peptides with pheromone activity. The sensor systems are discussed, which recognize peptide AIs and regulate the activity of bacterial intracellular effector systems. For different families of peptide AIs, the typical features of structural organization are determined, which are responsible for their biological activity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waters, C.M. and Bassler, B.L., Quorum Sensing: Cell-To-Cell Communication in Bacteria, Annu. Rev. Cel Dev. Biol., 2005, vol. 21, pp. 319–346.

    Article  CAS  Google Scholar 

  2. Bassler, B.L. and Losick, R., Bacterially Speaking, Cell, 2006, vol. 125, pp. 237–246.

    Article  PubMed  CAS  Google Scholar 

  3. Drider, D., Fimland, G., Hechard, Y., McMullen, L.M., and Prevost, H., The Continuing Story of Class IIa Bacteriocins, Microbiol. Mol. Biol. Rev, 2006, vol. 70, pp. 564–582.

    Article  PubMed  CAS  Google Scholar 

  4. Reading, N.C. and Sperandio, V., Quorum Sensing: the Many Languages of Bacteria, FEMS Microbiol. Letts., 2006, vol. 254, pp. 1–11.

    Article  CAS  Google Scholar 

  5. De Vuyst, L. and Leroy, F., Bacteriocins from Lactic Acid Bacteria: Production, Purification, and Food Applications, J. Mol. Microbiol. Biotechnol., 2007, vol. 13, pp. 194–199.

    Article  PubMed  CAS  Google Scholar 

  6. Jayaraman, A. and Wood, T.K., Bacterial Quorum Sensing: Signals, Circuits, and Implications for Biofilms and Disease, Annu. Rev. Biomed. Eng, 2008, vol. 10, pp. 145–167.

    Article  PubMed  CAS  Google Scholar 

  7. Maqueda, M., Sanchez-Hidalgo, M., Fernandez, M., Montalban-Lopez, M., Valdivia, E., and Martinez-Bueno, M., Genetic Features of Circular Bacteriocins Produced by Gram-Positive Bacteria, FEMS Microbiol. Rev., 2008, vol. 32, pp. 2–22.

    Article  PubMed  CAS  Google Scholar 

  8. Rice, S.A., McDougald, D., Givskov, M., and Kjelleberg, S., Detection and Inhibition of Bacterial Cell-Cell Communication, Meth. Mol. Biol., 2008, vol. 431, pp. 55–68.

    Article  CAS  Google Scholar 

  9. Brogden, K.A., Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria?, Nat. Rev. Microbiol., 2005, vol. 3, pp. 238–250.

    Article  PubMed  CAS  Google Scholar 

  10. Michiels, J., Dirix, G., Vanderleyden, J., and Xi, C., Processing and Export of Peptide Pheromones and Bacteriocins in Gram-Negative Bacteria, Trends Microbiol., 2001, vol. 9, pp. 164–168.

    Article  PubMed  CAS  Google Scholar 

  11. Shpakov, A.O., QS-Type Bacterial Signal Molecules of Nonpeptide Origin, Mikrobiologiya, 2009, vol. 78, no. 2, pp. 163–175 [Microbiology (Engl. Transl.), vol. 78, no. 2, pp. 133–144].

    CAS  Google Scholar 

  12. Konisky, J., Colicins and Other Bacteriocins with Established Modes of Action, Annu. Rev. Microbiol., 1982, vol. 36, pp. 125–144.

    Article  PubMed  CAS  Google Scholar 

  13. Moreno, F., San Millan, J.L., Hernandez-Chico, C., and Kolter, R., Microcins, in Biotechnol. Ser. 28, Genetics and Biochemistry of Antibiotics Production, Vining, L.C. and Stuttard, C., Eds., London: Butterworth-Heinemann, 1995, pp. 307–321.

    Google Scholar 

  14. Heng, N.C.K., Wescombe, P.A., Burton, J.P., Jack, R.W., and Tagg, J.R., The Diversity of Bacteriocins Produced by Gram-Positive Bacteria, in Bacteriocins-Ecology and Evolution, Riley, M.A. and Chavan, M.A, Eds., Heidelberg: Springer, pp. 45–92.

  15. Nes, I.F., Diep, D.B., and Holo, H., Bacteriocin Diversity in Streptococcus and Enterococcus, J. Bacteriol., 2007, vol. 189, pp. 1189–1198.

    Article  PubMed  CAS  Google Scholar 

  16. Li, Y.-H., Lau, P.C., Lee, J.H., Ellen, R.P., and Cvitkovitch, D.G., Natural Genetic Transformation of Streptococcus mutans Growing in Biofilms, J. Bacteriol., 2001, vol. 183, pp. 897–908.

    Article  PubMed  CAS  Google Scholar 

  17. Allan, E., Hussain, H.A., Crawford, K.R., Miah, S., Ascott, Z.K., Khwaja, M.H., and Hosie, A.H.F., Genetic Variation in comC, the Gene Encoding Competence-Stimulating Peptide (CSP) in Streptococcus mutans, FEMS Microbiol. Letts., 2007, vol. 268, pp. 47–51.

    Article  CAS  Google Scholar 

  18. Van Belkum, M.J., Derksen, D.J., Franz, C.M., and Vederas, J.C., Structure Function Relationship of Inducer Peptide Pheromones Involved in Bacteriocin Production in Carnobacterium maltaromaticum and Enterococcus faecium, Microbiology (UK), 2007, vol. 153, pp. 3660–3666.

    Google Scholar 

  19. Ji, G., Beavis, R., and Novick, R.P., Bacterial Interference Caused by Autoinducing Peptide Variants, Science, 1997, vol. 276, pp. 2027–2030.

    Article  PubMed  CAS  Google Scholar 

  20. Nakayama, J., Cao, Y., Horii, T., Sakuda, S., Akkermans, A.D.L., de Vos, W.M., and Nagasawa, H., Gelatinase Biosynthesis-Activating Pheromone: a Peptide Lactone That Mediates a Quorum Sensing in Enterococcus faecalis, Mol. Microbiol., 2001, vol. 41, pp. 145–154.

    Article  PubMed  CAS  Google Scholar 

  21. Magnuson, R., Solomon, J., and Grossman, A.D., Biochemical and Genetic Characterization of a Competence Pheromone from B. subtilis, Cell, 1994, vol. 77, pp. 207–216.

    Article  PubMed  CAS  Google Scholar 

  22. Ansaldi, M., Marolt, D., Stebe, T., Mandic-Mulec, I., and Dubnau, D., Specific Activation of the Bacillus Quorum-Sensing Systems by Isoprenylated Pheromone Variants, Mol. Microbiol., 2002, vol. 44, pp. 1561–1573.

    Article  PubMed  CAS  Google Scholar 

  23. Cheigh, C.I. and Pyun, Y.R., Nisin Biosynthesis and Its Properties, Biotechnol. Lett., 2005, vol. 27, pp. 1641–1648.

    Article  PubMed  CAS  Google Scholar 

  24. Jack, R.W. and Jung, G., Lantibiotics and Microcins: Polypeptides with Unusual Chemical Diversity, Curr. Opin. Chem. Biol., 2000, vol. 4, pp. 310–317.

    Article  PubMed  CAS  Google Scholar 

  25. McAuliffe, O., Ross, R.P., and Hill, C., Lantibiotics: Structure, Biosynthesis and Mode of Action, FEMS Microbiol. Rev., 2001, vol. 25, pp. 285–308.

    Article  PubMed  CAS  Google Scholar 

  26. Stein, T., Bacillus subtilis Antibiotics: Structures, Syntheses and Specific Functions, Mol. Microbiol., 2005, vol. 56, pp. 845–857.

    Article  PubMed  CAS  Google Scholar 

  27. Kleerebezem, M. and Quadri, L.E., Peptide Pheromone-Dependent Regulation of Antimicrobial Peptide Production in Gram-Positive Bacteria: a Case of Multicellular Behavior, Peptides, 2001, vol. 22, pp. 1579–1596.

    Article  PubMed  CAS  Google Scholar 

  28. Ross, R.P., Morgan, S., and Hill, C., Preservation and Fermentation: Past, Present and Future, Int. J. Food Microbiol, 2002, vol. 79, pp. 3–16.

    Article  PubMed  CAS  Google Scholar 

  29. Kleerebezem, M., Quorum Sensing Control of Lantibiotic Production: Nisin and Subtilin Autoregulates Their Own Biosynthesis, Peptides, 2004, vol. 25, pp. 1405–1414.

    Article  PubMed  CAS  Google Scholar 

  30. Stein, T., Borchert, S., Conrad, B., Feesche, J., Hofemeister, B., Hofemeister, J., and Entian, K.D., Two Different Lantibiotic-Like Peptides Originate from the Ericin Gene Cluster of Bacillus subtilis A1/3, J. Bacteriol., 2002, vol. 184, pp. 1703–1711.

    Article  PubMed  CAS  Google Scholar 

  31. Schmitz, S., Hoffmann, A., Szekat, C., Rudd, B., and Bierbaum, G., The Lantibiotic Mersacidin Is an Autoinducing Peptide, Appl. Environ. Microbiol., 2006, vol. 72, pp. 7270–7277.

    Article  PubMed  CAS  Google Scholar 

  32. Zimmermann, N. and Jung, G., The Three-Dimensional Solution Structure of the Lantibiotic Murein-Biosynthesis-Inhibitor Astagardine Determined by NMR, Eur. J. Biochem., 1997, vol. 246, pp. 809–819.

    Article  PubMed  CAS  Google Scholar 

  33. Petersen, F.C., Fimland, G., and Scheie, A.A., Purification and Functional Studies of a Potent Modified Quorum-Sensing Peptide and a Two-Peptide Bacteriocin in Streptococcus mutans, Mol. Microbiol., 2006, vol. 61, pp. 1322–1334.

    Article  PubMed  CAS  Google Scholar 

  34. Holtsmark, I., Mantzilas, D., Eijsink, V.G.H., and Brurberg, M.B., Purification, Characterization, and Gene Sequence of Michiganin A, an Astagardine-Like Lantibiotic Produced by the Tomato Pathogen Clavibacter michiganensis subsp. michiganensis, Appl. Environ. Microbiol., 2006, vol. 72, pp. 5814–5821.

    Article  PubMed  CAS  Google Scholar 

  35. Holtsmark, I., Eijsink, V.G.H., and Brurberg, M.B., Bacteriocins from Plant Pathogenic Bacteria, FEMS Microbiol. Letts., 2008, vol. 280, pp. 1–7.

    Article  CAS  Google Scholar 

  36. Paik, S.H., Chakicherla, A., and Hansen, J.N., Identification and Characterization of the Structural and Transporter Genes for, and the Chemical and Biological Properties of, Sublancin 168, a Novel Lantibiotic Produced by Bacillus subtilis 168, J. Biol. Chem., 1998, vol. 273, pp. 23134–23142.

    Article  PubMed  CAS  Google Scholar 

  37. Dorenbos, R., Stein, T., Kabel, J., Bruand, C., Bolhuis, A., and Bron, S., Thiol-Disulphide Oxidoreductases Are Essential for the Production of the Lantibiotic Sublancin 168, J. Biol. Chem., 2002, vol. 277, pp. 16682–16688.

    Article  PubMed  CAS  Google Scholar 

  38. Marx, R., Stein, T., Entian, K.D., and Glaser, S.J., Structure of the Bacillus subtilis Peptide Antibiotic Subtilisin A Determined by 1H-NMR and Matrix Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry, J. Protein Chem, 2001, vol. 20, pp. 501–506.

    Article  PubMed  CAS  Google Scholar 

  39. Kawulka, K.E., Sprules, T., Diaper, C.M., Whittal, R.M., McKay, R.T., and Mercier, P., Structure of Subtilisin A, a Cyclic Antimicrobial Peptide from Bacillus subtilis with Unusual Sulfur to α-Carbon Cross-Links: Formation and Reduction of α-Thio-Amino Acid Derivatives, Biochemistry, 2004, vol. 43, pp. 3385–3395.

    Article  PubMed  CAS  Google Scholar 

  40. Ennahar, S., Sashihara, T., Sonomoto, K., and Ishizaki, A., Class IIa Bacteriocins: Biosynthesis, Structure and Activity, FEMS Microbiol. Rev., 2000, vol. 24, pp. 85–106.

    Article  PubMed  CAS  Google Scholar 

  41. Cleveland, J., Montville, T.J., Nes, I.F., and Chikindas, M.L., Bacteriocins: Safe Natural Antimicrobials for Food Preservation, Int. J. Food Microbiol., 2001, vol. 71, pp. 1–20.

    Article  PubMed  CAS  Google Scholar 

  42. Fimland, G., Johnsen, L., Dalhus, B., and Nissen-Meyer, J., Pediocin-Like Antimicrobial Properties (Class IIa Bacteriocines) and Their Immunity Proteins: Biosynthesis, Structure and Mode of Action, J. Pept. Sci., 2005, vol. 11, pp. 688–696.

    Article  PubMed  CAS  Google Scholar 

  43. Aucher, W., Lacombe, C., Hequet, A., Frere, J., and Berjeaud, J.M., Influence of Amino Acid Substitutions in the Leader Peptide on Maturation and Secretion of Mesentericin Y105 by Leuconostoc mesenteroides, J. Bacteriol., 2005, vol. 187, pp. 2218–2223.

    Article  PubMed  CAS  Google Scholar 

  44. Fimland, G., Johnsen, L., Axelsson, L., Brurberg, M.B., Nes, I.F., Eijsink, V.G.H., and Nissen-Meyer, J., A C-Terminal Disulfide Bridge in Pediocin-Like Bacteriocins Renders Bacteriocin Activity Less Temperature Dependent and Is a Major Determinant of the Antimicrobial Spectrum, J. Bacteriol., 2000, vol. 182, pp. 2643–2648.

    Article  PubMed  CAS  Google Scholar 

  45. Fimland, G., Eijsink, V.G., and Nissen-Meyer, J., Comparative Studies of Immunity Proteins of Pediocin-Like Bacteriocins, Microbiology (UK), 2002, vol. 148, pp. 3661–3670.

    CAS  Google Scholar 

  46. Hechard, Y., Pelletier, C., Cenatiempo, Y., and Frere, J., Analysis of σ54-Dependent Genes in Enterococcus faecalis: a Mannose PTS Permease (EII(Man)) Is Involved in Sensitivity to a Bacteriocin, Mesentericin Y105, Microbiology (UK), 2001, vol. 147, pp. 1575–1580.

    CAS  Google Scholar 

  47. Quadri, L.E., Yan, L.Z., Stiles, M.E., and Vederas, J.C., Effect of Amino Acid Substitutions on the Activity of Carnobacteriocin B2: Overproduction of the Antimicrobial Peptide, Its Engineered Variants, and Its Precursor in Escherichia coli, J. Bil. Chem., 1997, vol. 272, pp. 3384–3388.

    CAS  Google Scholar 

  48. Miller, K.W., Schamber, R., Osmanagaoglu, O., and Ray, B., Isolation and Characterization of Pediocin AcH Chimeric Protein Mutants with Altered Bactericidal Activity, Appl. Environ. Microbiol., 1998, vol. 64, pp. 1997–2005.

    PubMed  CAS  Google Scholar 

  49. Oppegard, C., Rogne, P., Emanuelsen, L., Kristiansen, P.E., Fimland, G., and Nissen-Meyer, J., The Two-Peptide Class II Bacteriocins: Structure, Production, and Mode of Action, J. Mol. Microbiol. Biotechnol., 2007, vol. 13, pp. 210–219.

    Article  PubMed  CAS  Google Scholar 

  50. Moll, G., Ubbink-Kok, T., Hauge, H.H., Nissen-Meyer, J., Nes, I.F., Konings, W.N., and Driessen, A.J.M., Lactococcin G Is a Potassium Ion-Conducting, Two-Component Bacteriocin, J. Bacteriol., 1996, vol. 178, pp. 600–605.

    PubMed  CAS  Google Scholar 

  51. Anderssen, E.L., Diep, D.B., Nes, I.F., Eijsink, V.G.H., and Nissen-Meyer, J., Antagonistic Activity of Lactobacillus plantarum C11: Two New Two-Peptide Bacteriocins, Plantaricin EF and JK, and the Induction Factor, Plantaricin A, Appl. Environ. Microbiol., 1998, vol. 64, pp. 2269–2272.

    PubMed  CAS  Google Scholar 

  52. Hauge, H.H. and Mantzilas, D., Eijsink V.G.H., Nissen-Meyer J. Membrane-Mimicking Entities Induce Structuring of the Two-Peptide Bacteriocins Plantaricin E/F and Plantaricin J/K, J. Bacteriol., 1999, vol. 181, pp. 740–747.

    PubMed  CAS  Google Scholar 

  53. Diep, D.B., Havarstein, L.S., and Nes, I.F., Characterization of the Locus Responsible for the Bacteriocin Production in Lactobacillus plantarum C11, J. Bacteriol., 1996, vol. 178, pp. 4472–4483.

    PubMed  CAS  Google Scholar 

  54. Cuozzo, S.A., Sesma, F., Palacios, J.M., de Ruiz Holgado, A.P., and Raya, R.R., Identification and Nucleotide Sequence of Genes Involved in the Synthesis of Lactocin 705, a Two-Peptide Bacteriocin from Lactobacillus casei CRL 705, FEMS Microbiol. Letts., 2000, vol. 185, pp. 157–161.

    Article  CAS  Google Scholar 

  55. Franz, C.M.A.P., Grube, A., Herrmann, A., Abriouel, H., Starke, J., Lombardi, A., Tauscher, B., and Holzapfel, W.H., Biochemical and Genetic Characterization of the Two-Peptide Bacteriocin Enterocin 1071 Produced by Enterococcus faecalis FAIR-E 309, Appl. Environ. Microbiol., 2002, vol. 68, pp. 2550–2554.

    Article  PubMed  CAS  Google Scholar 

  56. Balla, E. and Dicks, L.M.T., Molecular Analysis of the Gene Cluster Involved in the Production and Secretion of Enterocins 1071A and 1071B and of the Genes Responsible for the Replication and Transfer of Plasmid PEF1071, Int. J. Food Microbiol., 2005, vol. 99, pp. 33–45.

    Article  PubMed  CAS  Google Scholar 

  57. Zendo, T., Koga, S., Shigeri, Y., Nakayama, J., and Sonomoto, K., Lactococcin Q, a Novel Two-Peptide Bacteriocin Produced by Lactococcus lactis QU 4, Appl. Environ. Microbiol., 2006, vol. 72, pp. 3383–3389.

    Article  PubMed  CAS  Google Scholar 

  58. Cuozzo, S.A., Castellano, P., Sesma, F., Vignolo, G.M., and Raya, R.R., Differential Roles of the Two-Component Peptides of Lactocin 705 in Antimicrobial Activity, Curr. Microbiol., 2003, vol. 46, pp. 180–183.

    Article  PubMed  CAS  Google Scholar 

  59. Eijsink, V.H., Axelsson, L., Diep, D.B., Havarstein, L.S., Holo, H., and Nes, I.F., Production of Class II Bacteriocins by Lactic Acid Bacteria: An Example of Biological Warfare and Communication, Antonie van Leeuwenhoek, 2002, vol. 81, pp. 639–654.

    Article  PubMed  CAS  Google Scholar 

  60. Moll, G., Akker, E., Hauge, H.H., Nissen-Meyer, J., Nes, I.F., Konings, W.N., and Driessen, A.J.M., Complementary and Overlapping Selectivity of the Two-Peptide Bacteriocin EF and JK, J. Bacteriol., 1999, vol. 181, pp. 4848–4852.

    PubMed  CAS  Google Scholar 

  61. Cintas, L.M., Casaus, P., Holo, H., Hernandez, P.E., Nes, I.F., and Havarstein, L.S., Enterocins L50A and L50B, Two Novel Bacteriocins from Enterococcus faecium L50, Are Related to Staphylococcal Hemolysins, J. Bacteriol., 1998, vol. 180, pp. 1988–1994.

    PubMed  CAS  Google Scholar 

  62. Martinez, B., Fernandez, M., Suarez, J.E., and Rodriguez, A., Synthesis of Lactococcin 972, a Bacteriocin Produced by Lactococcus lactis IPLA 972, Depends on the Expression of a Plasmid-Encoded Bicistronic Operon, Microbiology, 1999, vol. 145, pp. 2155–3161.

    Google Scholar 

  63. Martinez, B., Zomer, A.L., Rodriguez, A., Kok, J., and Kuipers, O.P., Cell Envelope Stress Induced by the Bacteriocin Lcn972 Is Sensed by the Lactococcal Two-Component System CesSR, Mol. Microbiol., 2007, vol. 64, pp. 473–486.

    Article  PubMed  CAS  Google Scholar 

  64. Beukes, M. and Hastings, J.W., Self-Protection Against Cell Wall Hydrolysis in Streptococcus milleri NMSCC 061 and Analysis of the Millericin B Operon, Appl. Environ. Microbiol., 2001, vol. 67, pp. 3888–3896.

    Article  PubMed  CAS  Google Scholar 

  65. Joerger, M.C. and Klaenhammer, T.R., Cloning, Expression, and Nucleotide Sequence of the Lactobacillus helveticus 481 Gene Encoding the Bacteriocin Helveticin J, J. Bacteriol., 1990, vol. 172, pp. 6339–6347.

    PubMed  CAS  Google Scholar 

  66. Sanchez-Barrena, M., Martinez-Ripoll, G., Galvez, A., Valdivia, E., Maqueda, M., Cruz, V., and Albert, A., Structure of Bacteriocin AS-48: from Soluble State to Membrane Bound State, J. Mol. Biol., 2003, vol. 334, pp. 541–549.

    Article  PubMed  CAS  Google Scholar 

  67. Kawai, Y., Kemperman, R., and Saito, T., The Circular Bacteriocins Gassericin A and Circularin A, Curr. Prot. Pept. Sci., 2004, vol. 5, pp. 393–398.

    Article  CAS  Google Scholar 

  68. Fernandez, M., Sanchez-Hidalgo, M., Garcia-Quintans, N., Martinez-Bueno, M., Valdivia, E., Lopez, P., and Maqueda, M., Processing of the as-48ABC RNA in AS-48 Enterocin Production by Enterococcus faecalis, J. Bacteriol., 2008, vol. 190(1), pp. 240–250.

    Article  PubMed  CAS  Google Scholar 

  69. Kalmokoff, M.L., Cyr, T.D., Hefford, M.A., Whitford, M.F., and Teather, R.M., Butyrivibriocin AR10, a New Cyclic Bacteriocin Produced by the Ruminal Anaerobe Butyrivibrio fibrisolvens AR10: Characterization of the Gene and Peptide, Can. J. Microbiol., 2003, vol. 49, pp. 763–773.

    Article  PubMed  CAS  Google Scholar 

  70. Havarstein, L.S., Coomaraswamy, G., and Morrison, D.A., An Unmodified Heptadecapeptide Pheromone Induces Competence for Genetic Transformation in Streptococcus pneumoniae, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 11140–11144.

    Article  PubMed  CAS  Google Scholar 

  71. Brurberg, M.B., Nes, I.F., and Eijsink, V.G.H., Pheromone-Induced Production of Antimicrobial Peptides in Lactobacillus, Mol. Microbiol., 1997, vol. 26, pp. 347–360.

    Article  PubMed  CAS  Google Scholar 

  72. Nilsen, T., Nes, I.F., and Holo, H., An Exported Inducer Peptide Regulates Bacteriocin Production in Enterococcus faecium CTC492, J. Bacteriol., 1998, vol. 180, pp. 1848–1854.

    PubMed  CAS  Google Scholar 

  73. Rohde, B.H. and Quadri, L.E.N., Functional Characterization of a Three-Component Regulatory System Involved in Quorum Sensing-Based Regulation of Peptide Antibiotic Production in Carnobacterium maltaromaticum, BMC Microbiol., 2006, vol. 6, p. 93.

    Article  PubMed  CAS  Google Scholar 

  74. Johnsborg, O., Kristiansen, P.E., Blomqvist, T., and Havarstein, L.S., A Hydrophobic Patch in the Competence-Stimulating Peptide, a Pneumococcal Competence Pheromone, Is Essential for Specificity and Biological Activity, J. Bacteriol., 2006, vol. 188, pp. 1744–1749.

    Article  PubMed  CAS  Google Scholar 

  75. Schneider, K.B., Palmer, T.M., and Grossman, A.D., Characterization of comQ and comX, Two Genes Required for Production of ComX Pheromone of Bacillus subtilis, J. Bacteriol., 2002, vol. 184, pp. 410–419.

    Article  CAS  Google Scholar 

  76. Kreth, J., Merritt, J., Shi, W., and Qi, F., Coordinated Bacteriocin Production and Competence Development: a Possible Mechanism for Talking up DNA from Neighboring Species, Mol. Microbiol., 2005, vol. 57, pp. 392–404.

    Article  PubMed  CAS  Google Scholar 

  77. Van der Ploeg, J.R., Regulation of Bacteriocin Production in Streptococcus mutans by the Quorum-Sensing System Required for Development of Genetic Competence, J. Bacteriol., 2005, vol. 187, pp. 3980–3989.

    Article  PubMed  CAS  Google Scholar 

  78. Steinmoen, H., Teigen, A., and Havarstein, L.S., Competence-Induced Cells of Streptococcus pneumoniae Lyse Competence-Deficient Cells of the Same Strain During Co-Cultivation, J. Bacteriol., 2003, vol. 185, pp. 7176–7183.

    Article  PubMed  CAS  Google Scholar 

  79. Guiral, S., Mitchell, T.J., Martin, B., and Claverys, J.P., Competence-Programmed Predation of Non-Competent Cells in the Human Pathogen Streptococcus pneumoniae: Genetic Requirements, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 8710–8715.

    Article  PubMed  CAS  Google Scholar 

  80. Oggioni, M.R., Iannelli, F., Ricci, S., Chiavolini, D., Parigi, R., Trappetti, C., Claverys, J.P., and Pozzi, G., Antibacterial Activity of a Competence-Stimulating Peptide in Experimental Sepsis Caused by Streptococcus pneumoniae, Antimicrob. Agents Chemother., 2004, vol. 48, pp. 4725–4732.

    Article  PubMed  CAS  Google Scholar 

  81. Novick, R.P., Autoinduction and Signal Transduction in the Regulation of Staphylococcal Virulence, Mol. Microbiol., 2003, vol. 48, pp. 1429–1449.

    Article  PubMed  CAS  Google Scholar 

  82. Lazazzera, B.A., Kurtser, I.G., McQuade, R.S., and Grossman, A.D., An Autoregulatory Circuit Affecting Peptide Signaling in Bacillus subtilis, J. Bacteriol., 1999, vol. 181, pp. 5193–5200.

    PubMed  CAS  Google Scholar 

  83. Jiang, M., Grau, R., and Perego, M., Differential Processing of Propeptide Inhibitors of Rap Phosphatases in Bacillus subtilis, J. Bacteriol., 2000, vol. 182, pp. 303–310.

    Article  PubMed  CAS  Google Scholar 

  84. McQuade, R.S., Comella, N., and Grossman, A.D., Control of a Family of Phosphatase Regulatory Genes (phr) by the Alternate Sigma Factor Sigma-H of Bacillus subtilis, J. Bacteriol., 2001, vol. 183, pp. 4905–4909.

    Article  PubMed  CAS  Google Scholar 

  85. Andrade, M.O., Alegria, M.C., Guzzo, C.R., Docena, C., Rosa, M.C.P., Ramos, C.H., and Farah, C.S., The HD-GYP Domain of RpfG Mediates a Direct Linkage Between the Rpf Quorum-Sensing Pathway and a Subset of Diguanylate Cyclase Proteins in the Phytopathogen Xanthomonas axonopodis, Mol. Microbiol., 2006, vol. 62, pp. 537–551.

    Article  PubMed  CAS  Google Scholar 

  86. Deery, W.J., Gao, T., Ammann, R., and Gomer, R.H., A Single Cell Density-Sensing Factor Stimulates Distinct Signal Transduction Pathways Through Two Different Receptors, J. Biol. Chem., 2002, vol. 277, pp. 31972–31979.

    Article  PubMed  CAS  Google Scholar 

  87. Shpakov, A.O. and Pertseva, M.N., Signal Transduction Systems of Prokaryotes, Zhurn. Evol. Biokhim. Fiziol., 2008, vol. 44, pp. 113–130.

    Google Scholar 

  88. Shpakov, A.O. and Pertseva, M.N., Signaling Systems of Lower Eukaryotes and Their Evolution, Int. Rev. Cell Mol. Biol., 2008, vol. 269, pp. 151–282.

    Article  PubMed  CAS  Google Scholar 

  89. Marina, A., Waldburger, C.D., and Hendrickson, W.A., Structure of the Entire Cytoplasmic Portion of a Sensor Histidine-Kinase Protein, EMBO J., 2005, vol. 24, pp. 4247–4259.

    Article  PubMed  CAS  Google Scholar 

  90. Pertseva, M.N and Shpakov, A.O, On the Prokaryotic Genesis of Hormonal Systems of Eukaryotes, in Evolutionary Biochemistry and Related Areas of Physicochemical Biology, Poglazov, B., Ed., Moscow: Bach Inst. Biochem and ANKO, 1995, pp. 509–519.

    Google Scholar 

  91. Margulis, L., The Conscious Cell, Ann. New York Acad. Sci., 2001, vol. 929, pp. 55–70.

    Article  CAS  Google Scholar 

  92. Shpakov, A.O and Pertseva, M.N, The Peptide Strategy as a Novel Approach to the Study of G protein-Coupled Signaling Systems, in Signal Transduction Research Trends, Grachevsky, N.O., Ed., Nova Sci., 2007, pp. 45–93.

  93. Veron, W., Orange, N., Feuilloley, M.G.J., and Lesouhaitier, O., Natriuretic Peptides Modify Pseudomonas fluorescens Cytotoxicity by Regulating Cyclic Nucleotides and Modifying LPS Structure, BMC Microbiol., 2008, vol. 8, p. 114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Original Russian Text © A.O. Shpakov, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 3, pp. 291–303.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shpakov, A.O. Peptide autoinducers in bacteria. Microbiology 78, 255–266 (2009). https://doi.org/10.1134/S0026261709030011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709030011

Key words

Navigation