Skip to main content
Log in

Participation of Surface Oxygen in the Stabilization of the Rh/HOPG System with Respect to NO2

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

In this work, we used X-ray photoelectron spectroscopy (XPS) to perform a comparative study of the interaction of NO2 with two samples of highly oriented pyrolytic graphite (HOPG), on the surfaces of which rhodium was preliminarily deposited by evaporation in a vacuum, at room temperature and a pressure of 10–5 mbar. Before metal deposition, one of the HOPG samples was annealed in a vacuum at 600°C, and the other was bombarded with argon ions followed by exposure to air at room temperature for 1 h in order to introduce strongly bound oxygen atoms into the surface composition. After the deposition of rhodium onto the two HOPG samples, two model catalysts designated as Rh/C and Rh/C(A)–O were prepared. It was found that the interaction of NO2 with Rh/C led to the oxidation of graphite with the destruction of the surface layer. The Rh particles remained in a metallic state, but they were introduced into the near-surface layer of the carbon support. On the contrary, when the Rh/C(A)–O sample was treated with NO2, the deposited rhodium was partially converted into Rh2O3, while the graphite was oxidized to an insignificant degree and retained its original structure. The role of surface oxygen in the stabilization of graphite with respect to oxidation in NO2 was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Yermakov, Y.I., Surovikin, V.F., Plaksin, G.V., Semikolenov, V.A., Likholobov, V.A., Chuvilin, A.V., and Bogdanov, S.V., React. Kinet. Catal. Lett., 1987, vol. 33, p. 435.

    Article  CAS  Google Scholar 

  2. Simonov, P.A. and Likholobov, V.A., Physicochemical aspects of preparation of carbon-supported noble metal catalysts, in Catalysis and Electrocatalysis at Nanoparticle Surfaces, Wieckowski, A., Savinova, E.R., Vayenas, C.G., Eds., Boca Raton, FL: CRC Press, 2003, ch. 12, p. 409.

    Google Scholar 

  3. Stakheev, A.Yu., Tkachenko, O.P., Klement’ev, K.V., Grunert, W., Bragina, G.O., Mashkovskii, I.S., and Kustov, L.M., Kinet. Catal., 2005, vol. 46, p. 114.

    Article  CAS  Google Scholar 

  4. Deliy, I.V. and Simakova, I.L., Russ. Chem. Bull. Int. Ed., 2008, vol. 57, p. 2056.

    Article  CAS  Google Scholar 

  5. Deliy, I.V., Simakova, I.L., Ravasio, N., and Psaro, R., Appl. Catal. A: Gen., 2009, vol. 357, p. 170.

    Article  CAS  Google Scholar 

  6. Smirnov, M.Yu., Kalinkin, A.V., Simonov, P.A., and Bukhtiyarov, V.I., Kinet. Catal., 2022, vol. 63, p. 532.

    Article  CAS  Google Scholar 

  7. Smirnov, M.Yu., Kalinkin, A.V., Sorokin, A.M., and Bukhtiyarov, V.I., Kinet. Catal., 2020, vol. 61, p. 637.

    Article  CAS  Google Scholar 

  8. Smirnov, M.Yu., Kalinkin, A.V., Sorokin, A.M., and Bukhtiyarov, V.I., Kinet. Catal., 2020, vol. 61, p. 907.

    Article  CAS  Google Scholar 

  9. Smirnov, M.Yu., Kalinkin, A.V., Salanov, A.N., Sorokin, A.M., and Bukhtiyarov, V.I., Kinet. Catal., 2021, vol. 62, p. 664.

    Article  CAS  Google Scholar 

  10. Smirnov, M.Yu., Kalinkin, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2023, vol. 64, p. 320.

    Article  CAS  Google Scholar 

  11. Kalinkin, A.V., Sorokin, A.M., Smirnov, M.Yu., and Bukhtiyarov, V.I., Kinet. Catal., 2014, vol. 55, p. 354.

    Article  CAS  Google Scholar 

  12. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie: Perkin-Elmer, 1992.

  13. Yang, D.-Q. and Sacher, E., Surf. Sci., 2002, vol. 504, p. 125.

    Article  CAS  Google Scholar 

  14. Rousseau, B., Estrade-Szwarckopf, H., Thomann, A.-L., and Brault, P., Appl. Phys. A, 2003, vol. 77, p. 591.

    Article  CAS  Google Scholar 

  15. Blume, R., Rosenthal, D., Tessonnier, J.-P., Li, H., Knop-Gericke, A., and Schlogl, R., ChemCatChem, 2015, vol. 7, p. 2871.

    Article  CAS  Google Scholar 

  16. Susi, T., Pichler, T., and Ayala, P., Beilstein J. Nanotechnol., 2015, vol. 6, p. 177.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kovtun, A., Jones, D., Dell’Elce, S., Treossi, E., Liscio, A., and Palermo, V., Carbon, 2019, vol. 143, p. 268.

    Article  CAS  Google Scholar 

  18. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., and Bieloshapka, I., J. Electron Spectrosc. Related Phenom., 2014, vol. 195, p. 145.

    Article  CAS  Google Scholar 

  19. Merel, P., Tabbal, M., Chaker, M., Moisa, S., and Margot, J., Appl. Surf. Sci., 1998, vol. 136, p. 105.

    Article  CAS  Google Scholar 

  20. Utsumi, S., Honda, H., Hattori, Y., Kanoh, H., Takahashi, K., Sakai, H., Abe, M., Yudasaka, M., Iijima, S., and Kaneko, K., J. Phys. Chem. C, 2007, vol. 111, p. 5572.

    Article  CAS  Google Scholar 

  21. Wang, Z.-M., Kanoh, H., Kaneko, K., Lu, G.Q., and Do, D., Carbon, 2002, vol. 40, p. 1231.

    Article  CAS  Google Scholar 

  22. Martınez, M.T., Callejas, M.A., Benito, A.M., Cochet, M., Seeger, T., Anson, A., Schreiber, J., Gordon, C., Marhic, C., Chauvet, O., Fierro, J.L.G., and Maser, W.K., Carbon, 2003, vol. 41, p. 2247.

    Article  Google Scholar 

  23. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice, C.A., and Ruoff, R.S., Carbon, 2009, vol. 47, p. 145.

    Article  CAS  Google Scholar 

  24. Hou, S., Su, S., Kasner, M.L., Shah, P., Patel, K., and Madarang, C.J., Chem. Phys. Lett., 2010, vol. 501, p. 68.

    Article  CAS  Google Scholar 

  25. Figueiredo, J.L. and Pereira, M.F.R., Catal. Today, 2010, vol. 150, p. 2.

    Article  CAS  Google Scholar 

  26. Ganguly, A., Sharma, S., Papakonstantinou, P., and Hamilton, J., J. Phys. Chem. C, 2011, vol. 115, p. 17009.

    Article  CAS  Google Scholar 

  27. Fu, C., Zhao, G., Zhang, H., and Li, S., Int. J. Electrochem. Sci., 2013, vol. 8, p. 6269.

    Article  CAS  Google Scholar 

  28. Weng-Sieh, Z., Gronsky, R., and Bell, A.T., J. Catal., 1997, vol. 170, p. 62.

    Article  CAS  Google Scholar 

  29. Kibis, L.S., Stadnichenko, A.I., Koscheev, S.V., Zaikovskii, V.I., and Boronin, A.I., J. Phys. Chem. C, 2016, vol. 120, p. 19142.

    Article  CAS  Google Scholar 

  30. Peuckert, M., Surf. Sci., 1984, vol. 141, p. 500.

    Article  CAS  Google Scholar 

  31. Tolia, A.A., Smiley, R.J., Delgass, W.N., Takoudis, C.G., and Weaver, M.J., J. Catal., 1994, vol. 150, p. 56.

    Article  CAS  Google Scholar 

  32. Dementjev, A.P., Ivanov, K.E., and Tsyvkunova, E.A., Appl. Surf. Sci., 2015, vol. 357, p. 1434.

    Article  CAS  Google Scholar 

  33. Oh, Y.J., Yoo, J.J., Kim, Y.I., Yoon, J.K., Yoon, H.N., Kim, J.-H., and Park, S.B., Electrochim. Acta, 2014, vol. 116, p. 118.

    Article  CAS  Google Scholar 

  34. Baird, R.J., Ku, R.C., and Wynblatt, P., Surf. Sci., 1980, vol. 97, p. 346.

    Article  CAS  Google Scholar 

  35. Baraldi, A., Dhanak, V.R., Kiskinova, M., and Rosei, R., Appl. Surf. Sci., 1994, vol. 78, p. 445.

    Article  CAS  Google Scholar 

  36. Lizzit, S., Baraldi, A., Cocco, D., Comelli, G., Paolucci, G., Rosei, R., and Kiskinova, M., Surf. Sci., 1998, vol. 410, p. 228.

    Article  CAS  Google Scholar 

  37. Saito, T., Esaka, F., Furuya, K., Kikuchi, T., Imamura, M., Matsubayashi, N., and Shimada, H., J. Electron Spectrosc. Related Phenom., 1998, vols. 88–91, p. 763.

    Article  Google Scholar 

  38. Bondino, F., Comelli, G., Baraldi, A., Vesselli, E., Rosei, R., Goldoni, A., and Lizzit, S., J. Chem. Phys., 2003, vol. 119, p. 12534.

    Article  CAS  Google Scholar 

  39. Rodriguez, J.A., Jirsak, T., Dvorak, J., Sambasivan, S., and Fischer, D., J. Phys. Chem. B, 2000, vol. 104, p. 319.

    Article  CAS  Google Scholar 

  40. Smirnov, M.Yu., Kalinkin, A.V., and Bukhtiyarov, V.I, J. Struct. Chem., 2007, vol. 48, p. 1053.

    Article  CAS  Google Scholar 

  41. Smirnov, M.Yu., Kalinkin, A.V., Dubkov, A.A., Vovk, E.I., Sorokin, A.M., Nizovskii, A.I., Carberry, B., and Bukhtiyarov, V.I., Kinet. Catal., 2008, vol. 49, p. 831.

    Article  CAS  Google Scholar 

  42. Haubrich, J., Quiller, R.G., Benz, L., Liu, Z., and Friend, C.M., Langmuir, 2010, vol. 26, p. 2445.

    Article  CAS  PubMed  Google Scholar 

  43. Smirnov, M.Yu., Kalinkin, A.V., Nazimov, D.A., Bukhtiyarov, V.I., Vovk, E.I., Ozenzoy, E., J. Struct. Chem., 2014, vol. 55, p. 757.

    Article  CAS  Google Scholar 

  44. Smirnov, M.Yu., Kalinkin, A.V., Nazimov, D.A., Toktarev, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2015, vol. 56, p. 540.

    Article  CAS  Google Scholar 

  45. Pomogailo, A.D., Kalinina, K.S., Golubeva, N.D., Dzhardimalieva, G.I., Pomogailo, S.I., Knerel’man, E.I., Protasova, S.G., and Ionov, A.M., Kinet.Catal., 2015, vol. 56, p. 694.

    Article  CAS  Google Scholar 

  46. Jeguirim, M., Tschamber, V., Brilhac, J.F., and Ehrburger, P., J. Anal. Appl. Pyrol., 2004, vol. 72, p. 171.

    Article  CAS  Google Scholar 

  47. Gao, X., Liu, S., Zhang, Y., Luo, Z., Ni, M., and Cen, K., Fuel Proc. Technol., 2011, vol. 92, p. 139.

    Article  CAS  Google Scholar 

  48. Fang, M.-L., Chou, M.-S., Chang, C.-Y., Chang, H.-Y., Chen, C.-H., Lin, S.-L., and Hsieh, Y.-K., Aerosol Air Quality Res., 2019, vol. 19, p. 2568.

    Article  CAS  Google Scholar 

  49. Belhachemi, M., Jeguirim, M., Limousy, L., and Addoun, F., Chem. Eng. J., 2014, vol. 253, p. 121.

    Article  CAS  Google Scholar 

  50. Ghouma, I., Jeguirim, M., Limousy, L., Bader, N., Ouederni, A., and Bennici, S., Materials, 2018, vol. 11, p. 622.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stakheev, A.Yu., Tkachenko, O.P., Kapustin, G.I., Telegina, N.S., Baeva, G.N., Brueva, T.R., Klementiev, K.V., Grunert, W., and Kustov, L.M., Russ. Chem. Bull., Int. Ed., 2004, vol. 53, p. 528.

    CAS  Google Scholar 

  52. Korovchenko, P., Renken, A., and Kiwi-Minsker, L., Catal. Today, 2005, vols. 102–103, p. 133.

    Article  Google Scholar 

  53. Mager, N., Meyer, N., Leonard, A.F., Job, N., Devillers, M., and Hermans, S., Appl. Catal. B: Environ., 2014, vols. 148–149, p. 424.

    Article  Google Scholar 

  54. Jia, N., Shi, Y., Zhang, S., Chen, X., Chen, P., and An, Z., Int. J. Hydrogen Energy, 2017, vol. 42, p. 8255.

    Article  CAS  Google Scholar 

  55. German, D., Pakrieva, E., Kolobova, E., Carabineiro, S.A.C., Stucchi, M., Villa, A., Prati, L., Bogdanchikova, N., Corberan, V.C., and Pestryakov, A., Catalysts, 2021, vol. 11, p. 115.

    Article  CAS  Google Scholar 

  56. Gao, J. and Guo, Q., Appl. Surf. Sci., 2012, vol. 258, p. 5412.

    Article  CAS  Google Scholar 

  57. Smirnov, M.Yu., Kalinkin, A.V., Sorokin, A.M., Salanov, A.N., and Bukhtiyarov, V.I., Kinet. Catal., 2023, vol. 63, no. 1, p. 78.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.N. Salanov for studying the Rh/C sample by SEM on a JEM-2010 instrument.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis. The studies were performed using the equipment of the Center for Collective Use “National Center for the Study of Catalysts” (a SPECS X-ray photoelectron spectrometer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Smirnov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations and notation: HOPG, highly oriented pyrolytic graphite; XPS, X-ray photoelectron spectroscopy; SEM, scanning electron microscopy; Eb, binding energy; Ekin, kinetic energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, M.Y., Kalinkin, A.V. & Bukhtiyarov, V.I. Participation of Surface Oxygen in the Stabilization of the Rh/HOPG System with Respect to NO2. Kinet Catal 65, 75–83 (2024). https://doi.org/10.1134/S0023158424010063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158424010063

Keywords:

Navigation