Skip to main content
Log in

Catalytic C(sp2)–C(sp3) Cross-Electrophile Coupling in the PtII–NaI–С2Н3I–СН3I–Acetone System

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A new catalytic system for reductive С(sp2)–C(sp3) cross-electrophile coupling was designed: PtII iodide complexes in an acetone solution of NaI catalyze the coupling of methyl iodide with vinyl iodide to form propylene. Simultaneously, a small amount of 1,3-butadiene, the product of C(sp2)–C(sp2) coupling, is released. The total yield of the products with respect to the reacted vinyl iodide is almost quantitative. In a large excess of CH3I, the C2H3I consumption is described by the pseudo-first-order kinetics. The cross-coupling occurs as the following sequence of steps: oxidative addition of CH3I to PtII iodide complexes to form a methyl PtIV complex → reduction of the methyl PtIV complex with I to form the corresponding PtII derivative → oxidative addition of C2H3I to the PtII derivative → reductive elimination of organyl ligands from the intermediate methyl vinyl PtIV complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. The product of the C(sp2)–C(sp2) coupling of butadiene was identified previously [18].

  2. The reversibility of the oxidative addition of methyl iodide to platinum(II) iodide complexes was shown previously [27, 28].

REFERENCES

  1. Chen, J.-Q. and Dong, Z.-B., Synthesis, vol. 52, no. 24, p. 3714.

  2. Niroomand Hosseini, F., Nabavizadeh, S.M., Shoara, R., Dadkhah Aseman, M., and Abu-Omar, M.M., Organometallics, 2021, vol. 40, no. 13, p. 2051.

    Article  CAS  Google Scholar 

  3. Reeves, E.K., Entz, E.D., and Neufeldt, S.R., Chem.-Eur. J., 2021, vol. 27, no. 20, p. 6161.

    Article  PubMed  Google Scholar 

  4. Andrade, M.A. and Martins, L., Molecules, 2020, vol. 25, no. 23, p. 5506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Temkin, O.N., Kinet. Catal., 2019, vol. 60, no. 6, p. 689.

    Article  CAS  Google Scholar 

  6. Kurokhtina, A.A., Larina, E.V., Lagoda, N.A., and Schmidt, A.F., Kinet. Catal., 2022, vol. 63, no. 5.

  7. Larina, E.V., Kurokhtina, A.A., Lagoda, N.A., and Schmidt, A.F., Kinet. Catal., 2022, vol. 63, no. 2, p. 207.

    Article  CAS  Google Scholar 

  8. Larina, E.V., Kurokhtina, A.A., Lagoda, N.A., Grigoryeva, T.A., and Schmidt, A.F., Kinet. Catal., 2023, vol. 64, no. 4, p. 431.

    Article  CAS  Google Scholar 

  9. Schmidt, A.F., Kurokhtina, A.A., Larina, E.V., Lagoda, N.A., Yavsin, D.A., Gurevich, S.A., Zelikman, V.M., Krotova, I.N., Rostovshchikova, T.N., and Tarkhanova, I.G., Kinet. Catal., 2023, vol. 64, no. 1, p. 32.

    Article  CAS  Google Scholar 

  10. Bhakta, S. and Ghosh, T., Org. Chem. Front., 2022, vol. 9, no. 18, p. 5074.

    Article  CAS  Google Scholar 

  11. Ge, D., Chen, J.-W., Chen, Y.-L., Ma, M., Shen, Z.-L., and Chu, X.-Q., Org. Chem. Front., 2023, vol. 10, no. 15, p. 3909.

    Article  CAS  Google Scholar 

  12. Doraghi, F., Yousefnejad, F., Farzipour, S., Aledavoud, S.P., Larijani, B., and Mahdavi, M., Org. Biomol. Chem., 2023, vol. 21, no. 9, p. 1846.

    Article  CAS  PubMed  Google Scholar 

  13. Campeau, L.-C. and Hazari, N., Organometallics, 2019, vol. 38, no. 1, p. 3.

    Article  CAS  PubMed  Google Scholar 

  14. Knappke, C.E.I., Grupe, S., Gaertner, D., Corpet, M., Gosmini, C., and Wangelin, A.J.v.W., Chemistry, 2014, vol. 20, no. 23, p. 6828.

    Article  CAS  PubMed  Google Scholar 

  15. Aghakhanpour, R.B., Paziresh, S., Nabavizadeh, S.M., Hoseini, S.J., and Niroomand Hosseini, F., J. Iran. Chem. Soc., 2020, vol. 17, no. 11, p. 2683.

    Article  CAS  Google Scholar 

  16. Beckers, I., Bugaev, A., and De Vos, D., Chem. Sci., 2023, vol. 14, no. 5, p. 1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanna, L.E. and Jarvo, E.R., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, no. 52, p. 15618.

    Article  CAS  PubMed  Google Scholar 

  18. Krasnyakova, T.V., Nikitenko, D.V., Morenko, V.V., and Mitchenko, S.A., Kinet. Catal., 2022, vol. 63, no. 3, p. 270.

    Article  CAS  Google Scholar 

  19. Sintez kompleksnykh soedinenii metallov platinovoi gruppy. Spravochnik (Synthesis of Complex Compounds of Platinum Group Metals. Reference Book) Chernyaev, I.N., Ed., Moscow: Nauka, 1964.

    Google Scholar 

  20. National Institute of Advanced Industrial Science and Technology, SDBSWeb. https://sdbs.db.aist.go.jp. Accessed July 22, 2023.

  21. Günther, H., NMR Spectroscopy: An Introduction, New York: Wiley, 1980.

    Google Scholar 

  22. Vilkov, L.V. and Pentin, Yu.A., Fizicheskie metody issledovaniya v khimii. Rezonansnye i elektroopticheskie metody (Physical Research Methods in Chemistry. Resonance and Electro-Optical Methods), Moscow: Vysshaya shkola, 1989.

  23. Priqueler, J.R.L., Butler, I.S., and Rochon, F.D., Appl. Spectrosc. Rev., 2006, vol. 41, no. 3, p. 185.

    Article  CAS  Google Scholar 

  24. Khazipov, O.V., Krasnyakova, T.V., Nikitenko, D.V., Merzlikina, M.A., Khomutova, E.V., and Mitchenko, S.A., J. Organomet. Chem., 2018, vol. 867, p. 333.

    Article  CAS  Google Scholar 

  25. Khazipov, O.V., Merzlikina, M.A., Nikytenko, D.V., Khomutova, E.V., Krasnyakova, T.V., and Mitchenko, S.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 1, p. 128.

    Article  CAS  Google Scholar 

  26. Wang, T. and Love, J.A., Organometallics, 2008, vol. 27, no. 13, p. 3290.

    Article  CAS  Google Scholar 

  27. Mitchenko S.A., Khazipov O.V., and Krasnyakova T.V., Theor. Exp. Chem., 2012, vol. 48, no. 4.

  28. Mitchenko, S.A., Khazipov, O.V., Mitchenko, E.S., and Krasnyakova, T.V., J. Organomet. Chem., 2014, vol. 752, p. 91.

    Article  CAS  Google Scholar 

  29. Howie, R.A. and Wardell, J.L., Acta Crystallogr., 2003, vol. C59, p. m184.

    CAS  Google Scholar 

  30. Mitchenko, S.A., Khazipov, O.V., and Krasnyakova, T.V., Russ. Chem. Bull., 2013, vol. 62, no. 4, p. 984.

    Article  CAS  Google Scholar 

  31. Ananikov, V.P., Musaev, D.G., and Morokuma, K., Organometallics, 2005, vol. 24, no. 4, p. 715.

    Article  CAS  Google Scholar 

  32. Ananikov, V.P., Musaev, D.G., and Morokuma, K., Eur. J. Inorg. Chem., 2007, p. 5390.

  33. Olivares, A.M. and Weix, D.J., J. Am. Chem. Soc., 2018, vol. 140, no. 7, p. 2446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ackerman, L.K.G., Lovell, M.M., and Weix, D.J., Nature, 2015, vol. 524, no. 7566, p. 454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, budget topic “Catalytic Transformations of Hydrocarbons and Their Derivatives under Homogeneous and Heterogeneous Conditions with the Formation of New C–C, S–O, and C–Element Bonds (FRES-2023-0005).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Krasnyakova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnyakova, T.V., Nikitenko, D.V. & Mitchenko, S.A. Catalytic C(sp2)–C(sp3) Cross-Electrophile Coupling in the PtII–NaI–С2Н3I–СН3I–Acetone System. Kinet Catal 65, 30–39 (2024). https://doi.org/10.1134/S002315842401004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842401004X

Keywords:

Navigation