Skip to main content
Log in

Composite Photocatalysts g-C3N4/TiO2 for Hydrogen Production and Dye Decomposition

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The photocatalytic activity of the g-C3N4/TiO2 composite samples in the processes of dye (methylene blue) decomposition and hydrogen evolution from an aqueous ethanol solution under the action of visible radiation (400 nm) has been studied. A new original method for the synthesis of the g-C3N4/TiO2 composite by depositing g-C3N4/TiO2 to TiO2 nanoparticles during sol-gel synthesis is proposed. The synthesized photocatalysts were characterized by X-ray diffraction, low-temperature gas adsorption, X-ray photoelectron spectroscopy, high-resolution transmission microscopy, and diffuse reflectance spectroscopy in the UV and visible regions. The maximum activity in the hydrogen evolution reaction was 1.3 mmol \({\text{g}}_{{{\text{cat}}}}^{{ - 1}}\) h–1, which exceeds the rate of hydrogen evolution on the unmodified g-C3N4 and TiO2 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Sun, W., Zhu, J., Zhang, M., Meng, X., Chen, M., Feng, Y., Chen, X., and Ding, Y., Chin. J. Catal., 2022, vol. 43, p. 2273.

    Article  CAS  Google Scholar 

  2. Zhang, S., Wang, K., Li, F., and Ho, S.H., Int. J. Hydrogen Energy, 2022, vol. 47, p. 37517.

    Article  CAS  Google Scholar 

  3. Yakushev, A.A., Abel, A.S., Averin, A.D., Beletskaya, I.P., Cheprakov, A.V., Ziankou, I.S., Bonneviot, L., and Bessmertnykh-Lemeune, A., Coord. Chem. Rev., 2022, vol. 458, p. 214331.

    Article  CAS  Google Scholar 

  4. Lyubina, T.P. and Kozlova, E.A., Kinet. Catal., 2012, vol. 53, no. 2, p. 188.

    Article  CAS  Google Scholar 

  5. Valeeva, A.A., Dorosheva, I.B., Kozlova, E.A., Sushnikova, A.A., Kurenkova, A.Y., and Schroettner, H., Int. J. Hydrogen Energy, 2021, vol. 46, p. 16917.

    Article  CAS  Google Scholar 

  6. Rempel, A.A. and Valeeva, A.A., Russ. Chem. Bull., 2019, vol. 68, p. 2163.

    Article  CAS  Google Scholar 

  7. Valeeva, A.A., Rempel, A.A., Rempel, S.V., Sadovnikov, S.I., and Gusev, A.I., Russ. Chem. Rev., 2021, vol. 90, p. 601.

    Article  Google Scholar 

  8. Yang, H., Mater. Res. Bull., 2021, vol. 142, p. 111406.

    Article  CAS  Google Scholar 

  9. Su, Y.W., Lin, W.H., Hsu, Y.J., and Wei, K.H., Small, 2014, vol. 10, p. 4427.

    Article  CAS  PubMed  Google Scholar 

  10. Patial, S., Raizada, P., Hasija, V., Singh, P., Thakur, V.K., and Nguyen, V.H., Mater. Today Energy, 2021, vol. 19, p. 100589.

    Article  CAS  Google Scholar 

  11. Xu, J., Shen, J., Jiang, H., Yu, X., Ahmad Qureshi, W., Maouche, C., Gao, J., Yang, J., and Liu, Q., J. Ind. Eng. Chem., 2023, vol. 119, p. 112.

    Article  CAS  Google Scholar 

  12. Eddy, D.R., Permana, M.D., Sakti, L.K., Sheha, G.A.N., Solihudin, G.A.N., Hidayat, S., Takei, T., Kumada, N., and Rahayu, I., Nanomaterials, 2023, vol. 13, p. 704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rafique, M., Hajra, S., Irshad, M., Usman, M., Imran, M., Assiri, M.A., and Ashraf, W.M., ACS Omega, 2023, vol. 8, p. 25640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rempel, A.A., Valeeva, A.A., Vokhmintsev, A.S., and Weinstein, I.A., Russ. Chem. Rev., 2021, vol. 90, p. 1397.

    Article  Google Scholar 

  15. Dorosheva, I.B., Valeeva, A.A., Rempel, A.A., Trestsova, M.A., Utepova, I.A., and Chupakhin, O.N., Inorg. Mater., 2021, vol. 57, p. 503.

    Article  CAS  Google Scholar 

  16. Fujishima, A., Rao, T.N., and Tryk, D.A., J. Photochem. Photobiol. C: Photochem. Rev., 2000, vol. 1, p. 1.

    Article  CAS  Google Scholar 

  17. Yan, H., Wang, X., Yao, M., and Yao, X., Prog. Nat. Sci. Mater. Int., 2013, vol. 23, p. 402.

    Article  CAS  Google Scholar 

  18. Qiang, W., Qu, X., Chen, C., Zhang, L., and Sun, D., Mater. Today Commun., 2022, vol. 33, p. 104216.

    Article  CAS  Google Scholar 

  19. Cheng, Y., Gao, J., Shi, Q., Li, Z., and Huang, W., J. Alloys Compd., 2022, vol. 901, p. 163562.

    Article  CAS  Google Scholar 

  20. Ansari, F., Sheibani, S., and Fernandez-García, M., J. Alloys Compd., 2022, vol. 919, p. 165864.

    Article  CAS  Google Scholar 

  21. Yin, Z., Zhang, X., Yuan, X., Wei, W., Xiao, Y., and Cao, S., J. Cleaner Prod., 2022, vol. 375, p. 134112.

    Article  CAS  Google Scholar 

  22. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., and Pillai, S.C., J. Photochem. Photobiol. C: Photochem. Rev., 2015, vol. 25, p. 1.

    Article  CAS  Google Scholar 

  23. Tang, Z., Xu, L., Shu, K., Yang, J., and Tang, H., Colloids Surf. A: Physicochem. Eng. Asp., 2022, vol. 642, p. 128686.

    Article  CAS  Google Scholar 

  24. Sabir, M., Rafiq, K., Abid, M.Z., Quyyum, U., Shah, S.S.A., Faizan, M., Rauf, A., Iqbal, S., and Hussain, E., Fuel, 2023, vol. 353, p. 129196.

    Article  CAS  Google Scholar 

  25. Luo, T., Sun, X., Ma, D., Wang, G., Yang, F., Zhang, Y., Huang, J., Zhang, H., Wang, J., and Peng, F., J. Phys. Chem., 2023, vol. 127, p. 1372.

    CAS  Google Scholar 

  26. Shi, Q., Zhang, X., Li, Z., Raza, A., and Li, G., ACS Appl. Mater. Interfaces, 2023, vol. 15, p. 30161.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, H., Su, T., Yu, S., Liao, W., Ren, W., Zhu, Z., Yang, K., Len, C., Dong, G., Zhao, D., and Lu, H., Mol. Catal., 2023, vol. 536, p. 112916.

    Article  CAS  Google Scholar 

  28. Priya, B.A., Sivakumar, T., and Venkateswari, P., J. Mater. Sci. Mater. Electron., 2022, vol. 33, p. 6646.

    Article  CAS  Google Scholar 

  29. Li, Y., He, Z., Liu, L., Jiang, Y., Ong, W.J., Duan, Y., Ho, W., and Dong, F., Nano Energy, 2023, vol. 105, p. 108032.

    Article  CAS  Google Scholar 

  30. Wang, J. and Wang, S., Coord. Chem. Rev., 2022, vol. 453, p. 214338.

    Article  CAS  Google Scholar 

  31. Dong, G., Zhang, Y., Pan, Q., and Qiu, J., J. Photochem. Photobiol. C: Photochem. Rev., 2014, vol. 20, p. 33.

    Article  CAS  Google Scholar 

  32. Sun, Y., Kumar, V., and Kim, K.H., Sep. Purif. Technol., 2023, vol. 305, p. 122413.

    Article  CAS  Google Scholar 

  33. Kozlova, E.A., Valeeva, A.A., Sushnikova, A.A., Zhurenok, A.V., and Rempel, A.A., Nanosyst. Phys. Chem. Mater., 2022, vol. 13, no. 2022, p. 632.

  34. Fina, F., Callear, S.K., Carins, G.M., and Irvine, J.T.S., Chem. Mater., 2015, vol. 27, p. 2612.

    Article  CAS  Google Scholar 

  35. Qiu, P., Chen, H., Xu, C., Zhou, N., Jiang, F., Wang, X., and Fu, Y.J., Mater. Chem. A, 2015, vol. 3, p. 24237.

    Article  CAS  Google Scholar 

  36. Tang, C., Cheng, M., Lai, C., Li, L., Yang, X., Du, L., Zhang, G., Wang, G., and Yang, L., Coord. Chem. Rev., 2023, vol. 474, p. 214846.

    Article  CAS  Google Scholar 

  37. Mai, W., Wen, F., Xie, D., Leng, Y., and Mu, Z., J. Adv. Ceram., 2014, vol. 3, p. 49.

    Article  CAS  Google Scholar 

  38. Kaichev, V.V., Chesalov, Y.A., Saraev, A.A., Klyushin, A.Y., Knop-Gericke, A., Andrushkevich, T.V., and Bukhtiyarov, V.I., J. Catal., 2016, vol. 338, p. 82.

    Article  CAS  Google Scholar 

  39. Kaichev, V.V., Popova, G.Y., Chesalov, Y.A., Saraev, A.A., Zemlyanov, D.Y., Beloshapkin, S.A., Knop-Gericke, A., Schlogl, R., Andrushkevich, T.V., and Bukhtiyarov, V.I., J. Catal., 2014, vol. 311, p. 59.

    Article  CAS  Google Scholar 

  40. Finetti, P., Sedona, F., Rizzi, G.A., Mick, U., Sutara, F., Svec, M., Matolin, V., Schierbaum, K., and Granozzi, G., J. Phys. Chem. C, 2007, vol. 111, p. 869.

    Article  CAS  Google Scholar 

  41. Hasegawa, Y. and Ayame, A., Catal. Today, 2001, vol. 71, p. 177.

    Article  CAS  Google Scholar 

  42. Luan, Z., Maes, E.M., Van Der Heide, P.A.W., Zhao, D., Czernuszewicz, R.S., and Kevan, L., Chem. Mater., 1999, vol. 11, p. 3680.

    Article  CAS  Google Scholar 

  43. Dong, F., Zhao, Z., Xiong, T., Ni, Z., Zhang, W., Sun, Y., and Ho, W.K., ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 11392.

    Article  CAS  PubMed  Google Scholar 

  44. Liu, H., Chen, D., Wang, Z., Jing, H., and Zhang, R., Appl. Catal. B: Environ, 2017, vol. 203, p. 300.

    Article  CAS  Google Scholar 

  45. Kumar Singh, A., Das, C., and Indra, A., Coord. Chem. Rev., 2022, vol. 465, p. 214516.

    Article  CAS  Google Scholar 

  46. Alcudia-Ramos, M.A., Fuentez-Torres, M.O., Ortiz-Chi, F., Espinosa-González, C.G., Hernández, Como N., García-Zaleta, D.S., Kesarla, M.K., Torres-Torres, J.G., Collins-Martínez, V., and Godavarthi, S., Ceram. Int., 2020, vol. 46, p. 38.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Varaksin (Institute of Metallurgy, Ural Branch, Russian Academy of Sciences) and I.D. Popov (Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences) for assistance with the experiment.

Funding

This study was performed with financial support from the Russian Science Foundation, grant no. 21-73-20039. The XPS, XRD, and HRTEM studies of the photocatalysts were performed using the equipment of the Multiaccess Center “National Center for Catalyst Research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kozlova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations and designations: XPS is X-ray photoelectron spectroscopy; HRTEM, high-resolution transmission electron microscopy; XRD, X-ray diffraction analysis; CSR, coherent scattering region; D, absorbance; Φ, apparent quantum efficiency; MB, methylene blue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhurenok, A.V., Sushnikova, A.A., Valeeva, A.A. et al. Composite Photocatalysts g-C3N4/TiO2 for Hydrogen Production and Dye Decomposition. Kinet Catal 65, 112–121 (2024). https://doi.org/10.1134/S0023158423601225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423601225

Keywords:

Navigation