Skip to main content

Advertisement

Log in

Controlled loading of MnS2 on porous TiO2 nanosheets for enhanced photocatalytic hydrogen evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, spherical nanoparticles/2D nanosheets based MnS2/TiO2 nanocomposites were prepared in different weight compositions which were further employed to investigate photocatalytic degradation of hydrogen production under solar light irradiation. MnS2/TiO2 nanocomposites were prepared by in situ addition of exfoliated MnS2 (nanoparticles) in different weight ratios of 5, 10 and 15% in TiO2 sol. Surface morphology, phase analysis, optical, textural properties and elemental composition were studied using Scanning electron microscope (SEM), Transmission electron microspore (TEM), X-ray diffraction (XRD), UV–Vis spectroscopy, Photoluminescence spectroscopy, N2 adsorption–desorption analysis and X-ray photoelectron spectra (XPS) analysis. When the MnS2 loading was 15.0%, the MnS2/TiO2 photocatalyst reached the maximum rate for photocatalytic H2 evolution at 3150.7 μmol/h/g, which was 4.5 times higher than that of TiO2 (711.81 μmol/h/g). It is believed that the boosting photocatalytic performance of heterostructure could be ascribed to the synergetic effect between the MnS2 and TiO2, which accelerated the separation and migration efficiency of charge carries as well as enhanced the light–harvest efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. J. Huang, R. Meng, L. Zu, Z. Wang, N. Feng, Z. Yang, Y. Yu, J. Yang, Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries. Nano Energy. 46, 20–28 (2018)

    Article  CAS  Google Scholar 

  2. C. Meng, T. Ling, T.Y. Ma, H. Wang, Z. Hu, Y. Zhou, J. Mao, X.W. Du, M. Jaroniec, S.Z. Qiao, Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater. 29, 1604607 (2017)

    Article  Google Scholar 

  3. D. Lang, T. Shen, Q. Xiang, Roles of MoS2 and graphene as cocatalysts in the enhanced visible-light photocatalytic H2 production activity of multiarmed CdS nanorods. Chem. Cat. Chem. 7, 943–951 (2015)

    CAS  Google Scholar 

  4. T. Ohta, Photochemical and photoelectrochemical hydrogen production from water. Int J Hydrogen Energy. 13, 333–339 (1988)

    Article  CAS  Google Scholar 

  5. C.G. Silva, R. Juarez, T. Marino, R. Molinari, H. Garcia, Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2011)

    Article  Google Scholar 

  6. J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z.H. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015)

    Article  CAS  Google Scholar 

  7. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11, 11500–11512 (2021)

    Article  CAS  Google Scholar 

  8. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrasonics Sonochemistry. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  9. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCu5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Chem. Soc. 00, 1–14 (2021)

    CAS  Google Scholar 

  10. H. Zhuang, W. Chen, W. Xu, X. Liu, Facile synthesis of MoS2 QDs/TiO2 nanosheets via a self-assembly strategy for enhanced photocatalytic hydrogen production. Int. J. Ener. Res. 44, 1–7 (2020)

    Article  Google Scholar 

  11. S.V. Kite, A.N. Kadam, D.J. Sathe, S. Patil, S.S. Mali, C.K. Hong, S.-W. Lee, K.M. Garadkar, Nanostructured TiO2 sensitized with MoS2 nanoflowers for enhanced photodegradation efficiency toward methyl orange. ACS Omega 6, 17071–17085 (2021)

    Article  CAS  Google Scholar 

  12. J. Wang, K. Fu, X. Zhang, Q. Yin, G. Wei, Z. Su, When MoS2 meets TiO2: facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications. J. Mater. Chem. C 9, 8466–8482 (2021)

    Article  CAS  Google Scholar 

  13. A.M.A. Omar, A. Hassen, O.I. Metwalli, M.R. Saber, S.R.E. Mohamed, A.S.G. Khalil, Construction of 2D layered TiO2@MoS2 heterostructure for efficient adsorption and photodegradation of organic dyes. Nanotechnology 32, 335605 (2021)

    Article  CAS  Google Scholar 

  14. H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600464 (2016)

    Article  Google Scholar 

  15. Y. Li, C. Cai, Y. Gu, W. Cheng, W. Xiong, C. Zhao, Novel electronic properties of a new MoS2/TiO2 heterostructure and potential applications in solar cells and photocatalysis. Appl Surf Sci. 414, 34–40 (2017)

    Article  CAS  Google Scholar 

  16. Z. Liu, K. Xu, H. Yu, Z. Sun, Synergistic effect of Ag/MoS2/TiO2 heterostructure arrays on enhancement of photoelectrochemical and photocatalytic performance. Int J Energy Res. 45, 6850–6862 (2021)

    Article  CAS  Google Scholar 

  17. J. Su, S. Yu, M. Xu, Y. Guo, X. Sun, Y. Fan, Z. Zhang, J. Yan, W. Zhao, Enhanced visible light photocatalytic performances of few-layer MoS2@TiO2 hollow spheres heterostructures. Mater Res Bull 130, 110936 (2020)

    Article  CAS  Google Scholar 

  18. X. Ma, Z. Ma, Lu. Dongzhu, Q. Jiang, L. Li, T. Liao, B. Hou, Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light. J. Mater. Sci. Technol. 64, 21–28 (2021)

    Article  Google Scholar 

  19. S. Chen, W. Liu, Characterization and antiwear ability of non-coated ZnS nanoparticles and DDP-coated ZnS nanoparticles. Mater. Res. Bull. 36, 137–143 (2001)

    Article  CAS  Google Scholar 

  20. N. Hebalkar, A. Lobo, S.R. Sainkar, W. Vogel, S.K. Kulkarni, Properties of zinc sulphide nanoparticles stabilized in silica. J. Mater. Sci. 36, 4377 (2001)

    Article  CAS  Google Scholar 

  21. C. Sombuthawee, S.B. Bonsall, P.A. Humme, Phase equilibria in the systems ZnS2, MnS, ZnS, CuInS2, and MnS2, CuInS2. J. Solid State Chem. 25, 391–399 (1978)

    Article  CAS  Google Scholar 

  22. L. Fatolahi, A. Feizbakhsh, E. Konoz, H.A. Panahi et al., Solvothermal preparation of inorganic–organic hybrid compound of [(ZnS)2(en)]∞ and its application in photocatalytic degradation. J. Inorg. Organomet. Polym. Mater. 29, 80–89 (2019)

    Article  CAS  Google Scholar 

  23. H. Li, Y. Wang, G. Chen, Y. Sang, H. Jiang, J. He, X. Li, H. Liu, Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property. Nanoscale 8, 6101–6109 (2016)

    Article  CAS  Google Scholar 

  24. J. Beltran-Huarac, J. Palomino, O. Resto, J. Wang, W.M. Jadwisienczak, B.R. Weiner, G. Morell, Highly-crystalline g-MnS nanosaws. RSC Adv. 4, 38103 (2014)

    Article  CAS  Google Scholar 

  25. L.L. Fang, J.J. Chen, M. Zhang, X.S. Jiang, Z.Q. Sun, Introduction of Ti3+ ions into heterostructured TiO2 nanotree arrays for enhanced photoelectrochemical performance. Appl. Surf. Sci. 490, 1–6 (2010)

    Article  Google Scholar 

  26. M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, Microwave assisted synthesis of pure and Ag doped SnO2 quantum dots as novel platform for high photocatalytic activity performance. J. Clus. Sci. 30, 351–363 (2019)

    Article  CAS  Google Scholar 

  27. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method. J. Iran. Chem. Soc. 15, 2789–2801 (2018)

    Article  CAS  Google Scholar 

  28. M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali, Rapid synthesis of novel Cr-doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. J. Iran. Chem. Soc. 15, 1419–1430 (2018)

    Article  CAS  Google Scholar 

  29. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  30. R. BoopathiRaja, M. Parthibavarman, A. NisharaBegum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  31. J. Yan, Z. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L.P. Song, M.L. Zhang, Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J. Power Sources 194, 1202–1207 (2009)

    Article  CAS  Google Scholar 

  32. M. Jayashree, M. Parthibavarman, R. Boopathiraja, S. Prabhu, R. Ramesh, Ultrafine MnO2/graphene based hybrid nanoframeworks as high-performance flexible electrode for energy storage applications. J. Mater. Sci. Mater. Electron. 31, 6910–6918 (2020)

    Article  CAS  Google Scholar 

  33. Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012)

    Article  CAS  Google Scholar 

  34. L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ. Sci. 11, 106–114 (2018)

    Article  CAS  Google Scholar 

  35. C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 22, 1518–1524 (2012)

    Article  CAS  Google Scholar 

  36. S.V. Badalov, R. Wilhelm, W.G. Schmidt, Photocatalytic properties of graphene-supported titania clusters from density-functional theory. J. Comput. Chem. 41, 1921–1930 (2020)

    Article  CAS  Google Scholar 

  37. V.R. Jauja-Ccana, A.V.C. Huamán, G.T. Feliciano, A.R.-T. La Gómez, Optical and electronic properties of TiO2/GOQDs composites: a combined experimental and first-principles calculations study. Comput Mat Sci. 195, 110503 (2021)

    Article  CAS  Google Scholar 

  38. Q. Liu, Z. Pu, A.M. Asiri, A.H. Qusti, A.O. Al-Youbi, X. Sun, One-pot synthesis of reduced graphene oxide/metal (oxide) composites. J. Nanopart. Res. 15, 2057–2064 (2013)

    Article  CAS  Google Scholar 

  39. Y. Lv, Y. Liu, Y. Zhu, Y. Zhu, Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod. J. Mater. Chem. A. 2, 1174–1182 (2014)

    Article  CAS  Google Scholar 

  40. F.A. Frame, F.E. Osterloh, CdSe-MoS2: a quantum size confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114, 10628–10633 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BAP and TS, study conceptualization and writing (original draft) the manuscript. PV editing the manuscript.

Corresponding author

Correspondence to B. Anandha Priya.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical approval

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, B.A., Sivakumar, T. & Venkateswari, P. Controlled loading of MnS2 on porous TiO2 nanosheets for enhanced photocatalytic hydrogen evolution. J Mater Sci: Mater Electron 33, 6646–6656 (2022). https://doi.org/10.1007/s10854-022-07839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07839-0

Navigation