Skip to main content
Log in

Kinetics of Chemical Reactions in Spray

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The number of observations that demonstrate a significant effect of the size of droplets on the kinetics of chemical processes has increased with the expansion of the scope of applications of spray technology. The equations linking the concentrations of reagents, the volume of droplets, the initial composition of a solution, the composition of the gas medium, and the speed of processes are formulated within the framework of formal chemical kinetics. Using second order reactions (coupling, exchange, condensation, polymerization, and polycondensation reactions) as examples, it is shown that size kinetic effects occur when chemical processes are accompanied by changes in the droplet sizes in equilibrium with the gas medium. The results of computer simulation of condensation and polycondensation reactions are given, which reproduce size effects. Kinetic curves obtained by simulation of the polycondensation process are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Leng, J., Wang, Z., Wang, J., Wu, H.H., Yan, G., Li, X., Guo, H., Liu, Y., Zhang, Q., and Guo, Z., Chem. Soc. Rev. R. Soc. Chem., 2019, vol. 48, no. 11, p. 3015. https://doi.org/10.1039/c8cs00904j

    Article  CAS  Google Scholar 

  2. Latka, L., Pawlowski, l., Winnicki, M., Sokolowski, P., Malachowska, A., and Kozerski, S., Appl. Sci., 2020, vol. 10, no. 15. https://doi.org/10.3390/app10155153

  3. Raula, J., Eerikäinen, H., Lähde, A., and Kauppinen, E.I., Nanoparticulate Drug Delivery System, 2007, no. 7, p. 111. https://doi.org/10.1201/9781420008449-8

  4. Bernard, F., Fedioun, I., Peyroux, F.,Quilgar, S A., Daele, V., and Mellouki, A., J. Aerosol Sci., 2012, vol. 43, no. 1, p. 14. https://doi.org/10.1016/j.jaerosci.2011.08.005

    Article  CAS  Google Scholar 

  5. Akgün, E., Hubbuch, J., and Wörner, M., Macromol. Mater. Eng., 2014, vol. 299, no. 11, p. 1316. https://doi.org/10.1002/mame.201400032

    Article  CAS  Google Scholar 

  6. Suvarli, N., Perner-Nochta, I., Hubbuch, J., and Wörner, M., Polymers (Basel), 2021, vol. 13, no. 24, p. 4363. https://doi.org/10.3390/polym13244363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reinhold, M., Horst, C., and Hoffmann, U., Chem. Eng. Sci., 2001, vol. 56, no. 4, p. 1657. https://doi.org/10.1016/S0009-2509(00)00394-8

    Article  CAS  Google Scholar 

  8. Glavas, L., Odelius, K., and Albertsson, A.C., Biomacromol. Am. Chem. Soc., 2016, vol. 17, no. 9, p. 2930. https://doi.org/10.1021/acs.biomac.6b00747

    Article  CAS  Google Scholar 

  9. Murray, B.J. and Bertram, A.K., Phys. Chem. Chem. Phys., 2006, vol. 8, no. 1, p. 186. https://doi.org/10.1039/b513480c

    Article  CAS  PubMed  Google Scholar 

  10. Fedoseev, V.B. and Fedoseeva, E.N., JETP Lett., 2013, vol. 97, no. 7, p. 408. https://doi.org/10.1134/S0021364013070059

    Article  CAS  Google Scholar 

  11. Lee, J.K., Walker, K.L., Han, H.S., Kang, J., Prinz, F.B., Waymouth, R.M., Nam, H.G., and Zare, R.N., Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, no. 39, p. 19294. https://doi.org/10.1073/pnas.1911883116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ffedoseev, V.V. and Fedoseeva, E.N., Condens. Matter Interphases, 2022, vol. 24, no. 1, p. 101. https://doi.org/10.17308/kcmf.2022.24/9060

    Article  CAS  Google Scholar 

  13. Chen, P., Ye, N., He, C., Tang, L., Li, S., Sun, L., and Li, Y., Appl. Sci., 2019, vol. 9, no. 2, p. 228. https://doi.org/10.3390/app9020228

    Article  CAS  Google Scholar 

  14. Partch, R.E., Nakamura, K., Wolfe, K.J., and Matijevic, E., J. Colloid Interface Sci., 1985, vol. 105, no. 2, p. 560. https://doi.org/10.1016/0021-9797(85)90331-5

    Article  CAS  Google Scholar 

  15. Arias, V., Odelius, K., and Albertsson, A.C., Macromol. Rapid Commun., 2014, vol. 35, no. 22, p. 1949. https://doi.org/10.1002/marc.201400374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Petranović, Z., Edelbauer, W., Vujanovic, M., and Duic, N., Fuel, 2017, vol. 191, p. 25. https://doi.org/10.1016/j.fuel.2016.11.051

    Article  CAS  Google Scholar 

  17. Roelofs, F., Vogelsberger, W., and Buntkowsky, G., Zeitschrift fur Phys. Chemie, 2008, vol. 222, nos. 8–9, p. 1131. https://doi.org/10.1524/zpch.2008.5393

    Article  CAS  Google Scholar 

  18. Cui, Z., Xue, Y., Xiao, L., and Wang, T., J. Comput. Theor. Nanosci., 2013, vol. 10, no. 3, p. 569. https://doi.org/10.1166/jctn.2013.2735

    Article  CAS  Google Scholar 

  19. Xue, Y., Wang, X., and Cui, Z., Prog. React. Kinet. Mech., 2011, vol. 36, no. 4, p. 329. https://doi.org/10.3184/146867811X13103063934186

    Article  CAS  Google Scholar 

  20. Strizhak, P.E., Trypolskyi, A.I., Kosmambetova, G.R., Didenko, O.Z., and Gurnyk, T.N., Kinet. Catal., 2011, vol. 52, no. 1, p. 128. https://doi.org/10.1134/S0023158411010186

    Article  CAS  Google Scholar 

  21. Shishulin, A.V. and Fedoseev, V.B., Kinet. Catal., 2019, vol. 60, no. 3, p. 315. https://doi.org/10.1134/S0023158419030121

    Article  CAS  Google Scholar 

  22. Corral Arroyo, P., David, G., Alpert, P.A., Parmentier, E.A., Ammann, M., and Signorell, R., Science (New York), 2022, vol. 376, no. 6590, p. 293. https://doi.org/10.1126/science.abm7915

    Article  CAS  PubMed  Google Scholar 

  23. Qiu, J., Ishizuka, S., Tonokura, K., Colussi, A.J., and Enami, S., J. Phys. Chem. Lett., 2019, vol. 10, no. 19, p. 5748. https://doi.org/10.1021/acs.jpclett.9b01953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yermakov A.N., Kinet. Catal., 2023, vol. 64, no. 1, p. 74. https://doi.org/10.1134/S0023158423010019

    Article  CAS  Google Scholar 

  25. Wei, Z., Li, Y., Cooks, R.G., and Yan, X., Ann. Rev. Phys. Chem., 2020, vol. 71, p. 31. https://doi.org/10.1146/annurev-physchem-121319-110654

    Article  CAS  Google Scholar 

  26. Raula, J., Eerikäinen, H., and Kauppinen, E.I., Int. J. Pharm., 2004, vol. 284, nos. 1–2, p. 13. https://doi.org/10.1016/j.ijpharm.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  27. Roshchin, D.E., Patlazhan, S.A., and Berlin, A.A., Eur. Polym. J., 2023, p. 112002. https://doi.org/10.1016/j.eurpolymj.2023.112002

  28. Fedoseev, V.B., Tech. Phys. Lett., 2023, vol. 49, no. 4, p. 71. https://doi.org/10.21883/TPL.2023.04.55884.19469

    Article  Google Scholar 

  29. Rusanov, A.I., Colloid J., 2012, vol. 74, no. 2, p. 136. https://doi.org/10.1134/S1061933X1202010X

    Article  CAS  Google Scholar 

  30. Fedoseev, V.B. and Fedoseeva E.N., J. Eng. Phys. Thermophys., 2020, vol. 93, no. 5, p. 1116. https://doi.org/10.1007/s10891-020-02212-6

    Article  CAS  Google Scholar 

  31. Fedoseev, V.B. and Fedoseeva, E.N., J. Eng. Phys. Thermophys., 2019, vol. 92, no. 5, p. 1191. https://doi.org/10.1007/s10891-019-02033-2

    Article  CAS  Google Scholar 

  32. Frank-Kamenetskii, D.A., Osnovy makrokinetiki. Diffuziya i teploperedacha v khimicheskoi kinetike (Fundamentals of Macrokinetics. Diffusion and Heat Transfer in Chemical Kinetics), Dolgoprudnyi: Izd. Dom Intellekt, 2008.

  33. Marin, A., Karpitschka, S., Noguera-Marín, D., Cabrerizo-Vilchez, M.A., Rossi, M., Kahler, C.J., and Rodriguez Valverde, M.A., Phys. Rev. Fluids, 2019, vol. 4, no. 4, p. 041601. https://doi.org/10.1103/PhysRevFluids.4.041601

    Article  Google Scholar 

  34. Zaveri, R.A., Easter, R.C., Shilling, J.E., and Seinfeld, J.H., Atmos. Chem. Phys., 2014, vol. 14, no. 10, p. 5153. https://doi.org/10.5194/acp-14-5153-2014

    Article  CAS  Google Scholar 

  35. Säckel, W. and Nieken, U., Macromol. Sym, vol. 333, no. 1, p. 297. https://doi.org/10.1002/masy.201300058

  36. Fisenko, S.P., Wang, W., Wuled Lenggoro, I., Okyuama, K., Chem. Eng. Sci., 2006, vol. 61, no. 18, p. 6029. https://doi.org/10.1016/j.ces.2006.05.028

    Article  CAS  Google Scholar 

  37. Fedoseev, V.B., Vestn. NNGU, 2000, no. 1, p. 146.

  38. Andrews, G., The Theory of Partitions, Cambridge Univ. Press, 1981.

    Google Scholar 

  39. Emel’yanenko, V.N., Verevkin, S.P., Schick, C., Stepurko, E.N., Roganov, G.N., and Georgieva, M.K., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 9, p. 1491. https://doi.org/10.1134/S0036024410090074

    Article  CAS  Google Scholar 

  40. Fedoseev, V.B. and Fedoseeva, E.N., Eng. Phys. Thermophys., 2023, vol. 96, no. 5, p. 1196. https://doi.org/10.1007/s10891-023-02785-y

    Article  CAS  Google Scholar 

  41. Harshe, Y.M., Storti, G., Morbidelli, M., Gelosa, S., and Moscatelli, D., Macromol. React. Eng., 2007, vol. 1, no. 6, p. 611. https://doi.org/10.1002/mren.200700019

    Article  CAS  Google Scholar 

  42. Kim, K.W. and Woo, S.I., Macromol. Chem. Phys., 2002, vol. 203, no. 15, p. 2245. https://doi.org/10.1002/1521-3935(200211)203:15<2245::AID-MACP2245>3.0.CO;2-3

    Article  CAS  Google Scholar 

  43. Ren, J., Biodegradable Poly(Lactic Acid): Synthesis, Modification, Processing and Applications, Berlin: Springer, 2010.

    Book  Google Scholar 

Download references

Funding

This study was carried out within the framework of State assignment for the Institute of Chemistry, Russian Academy of Sciences, with use of the equipment of Center for Collective Use Analytical Center of the Institute of Chemistry of the Russian Academy of Sciences supported by grant within program Funding the Development of Material and Technical Infrastructure of Centers for Collective Use of Scientific Equipment (unique identification code RF-2296.61321X0017, agreement no. 075-15 -2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Fedoseev.

Ethics declarations

The authors declare that there have no conflicts of interest to disclose.

Additional information

Translated by O. Kadkin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseev, V.B., Fedoseeva, E.N. Kinetics of Chemical Reactions in Spray. Kinet Catal 65, 85–92 (2024). https://doi.org/10.1134/S0023158423601201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423601201

Keywords:

Navigation