Skip to main content
Log in

Reasons for the Rapid Deactivation of a Cobalt Catalyst in the High-Efficiency Fischer–Tropsch Synthesis of C19+ Hydrocarbons

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The results of a study on the deactivation of an industrial Co–Al2O3/SiO2 catalyst under the conditions of highly productive Fischer–Tropsch synthesis of long-chained hydrocarbons at high pressure (6 MPa) are presented. It was found that an increase in the synthesis temperature led to a decrease in the rate of catalyst deactivation. The effect of the thermal agglomeration of cobalt particles and the carbonization of catalyst surface on the activity of the catalyst under the test conditions was insignificant. A correlation between the rate of catalyst deactivation and the selectivity for С19+ hydrocarbons was found; this correlation indicated the blocking of chain growth centers by synthesized waxes as the main reason for the rapid loss of catalyst activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Martinelli, M., Gnanamani, M.K., LeViness, S., Jacobs, G., and Shafer, W.D., Appl. Catal., A, 2020, vol. 608, no. 117740.

  2. Van de Loosdrecht, J., Botes, F., Ciobica, I., Ferreira, A., Gibson, P., Moodley, D., Saib, A., Visagie, J., Weststrate, C.J., and Niemantsverdriet, J., Comprehensive Inorganic Chemistry II: From Elements to Applications, Amsterdam: Elsevier, 2013, p. 525.

    Google Scholar 

  3. Savost’yanov, A.P., Yakovenko, R.E., Sulima, S.I., Bakun, V.G., Narochnyi, G.B., Chernyshev, V.M., and Mitchenko, S.A., Catal. Today, 2017, vol. 279, p. 107.

    Article  Google Scholar 

  4. Yakovenko, R.E., Savost’yanov, A.P., Narochniy, G.B., Soromotin, V.N., Zubkov, I.N., Papeta, O.P., Svetogorov, R.D., and Mitchenko, S.A., Catal. Sci. Technol., 2020, vol. 10, no. 22, p. 7613.

    Article  CAS  Google Scholar 

  5. Claeys, M., Dry, M.E., Steen, E.V., Berge, P., Booyens, S., Crous, R., Helden, P., Labuschagne, J., Moodley, D., and Saib, A., Am. Chem. Soc. Catal., 2015, vol. 5, no. 2, p. 841.

    CAS  Google Scholar 

  6. Keyvanloo, K., Fisher, M.J., Hecker, W.C., Lancee, R.J., Jacobs, G., and Bartholomew, C.H., J. Catal., 2015, vol. 327, p. 33.

    Article  CAS  Google Scholar 

  7. Jiang, Z., Zhao, Y., Huang, C., Song, Y., Li, D., Liu, Z., and Liu, Z., Fuel, 2018, vol. 226, p. 213.

    Article  CAS  Google Scholar 

  8. Wolf, M., Gibson, E.K., Olivier, E.J., Neethling, J.H., Catlow, C.R.A., Fischer, N., and Claeys, M., Am. Chem. Soc. Catal., 2019, vol. 9, no. 6, p. 4902.

    CAS  Google Scholar 

  9. Ma, W., Jacobs, G., Shafer, W.D., Pendyala, V.R.R., Xiao, Q., Hu, Y., and Davis, B.H., Catal. Lett., 2016, vol. 146, no. 7, p. 1204.

    Article  CAS  Google Scholar 

  10. Pölmann, F., Kern, C., Röbler, S., and Jess, A., Catal. Sci. Technol., 2016, vol. 6, p. 6593.

    Article  Google Scholar 

  11. Savost’yanov, A.P., Yakovenko, R.E., Narochniy, G.B., Sulima, S.I., Bakun, V.G., Soromotin, V.N., and Mitchenko, S.A., Catal. Commun., 2017, vol. 99, p. 25.

    Article  Google Scholar 

  12. Jinglin, Y., Xuejin, F., Yuebing, X., and Xiaohao, L., Catal. Sci. Technol., 2020, vol. 10, no. 4, p. 1182.

    Article  Google Scholar 

  13. Rahmati, M., Safdari, M., Fletcher, T., Argyle, M., and Bartholomew, C.H., Chem. Rev., 2020, vol. 120, no. 10, p. 4455.

    Article  CAS  Google Scholar 

  14. Yakovenko, R.E., Zubkov, I.N., Narochnyi, G.B., Papeta, O.P., Denisov, O.D., and Savost’yanov, A.P., Kinet. Catal., 2020, vol. 61, no. 2, p. 310.

    Article  CAS  Google Scholar 

  15. Mitchenko, S.A., Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Bakun, V.G., Sulima, S.I., and Yakuba, E.O., Kinet. Catal., 2017, vol. 58, no. 1, p. 81.

    Article  Google Scholar 

  16. Moodley, D., loosdrecht, J., Saib, A., Overett, M., Datye, A., and Niemantsverdriet, J., Appl. Catal., A, 2009, vol. 354, nos. 1–2, p. 102.

  17. Choudhury, H., Cheng, X., Afzal, S., Prakash, A.V., Tatarchuk, B.J., and Elbashir, N.O., Catal. Today, 2020, vol. 343, p. 112.

    Article  CAS  Google Scholar 

  18. Savost’yanov, A.P., Eliseev, O.L., Yakovenko, R.E., Narochniy, G.B., Maslakov, K.I., Zubkov, I.N., Soromotin, V.N., Kozakov, A.T., Nicolskii, A.V., and Mitchenko, S.A., Catal. Lett., 2020, vol. 150, no. 7, p. 1932.

    Article  Google Scholar 

  19. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD), 2012. http://www.icdd.com.

  20. Loosdrecht, J., Balzhinimaev, B., Dalmon, J., Niemantsverdriet, J., Tsybulya, S., Saib, A., Berge, P., and Visagie, J., Catal. Today, 2007, vol. 123, nos. 1–4, p. 293.

    Article  Google Scholar 

  21. Todic, B., Ma, W., Jacobs, G., Davis, B.H., and Bukur, D.B., J. Catal., 2014, vol. 311, p. 325.

    Article  CAS  Google Scholar 

  22. Rytter, E., Tsakoumis, N.E., and Holmen, A., Catal. Today, 2016, vol. 261, p. 3.

    Article  CAS  Google Scholar 

  23. Moodley, D., Claeys, M., van Steen, E., van Helden, P., Kistamurthy, D., Weststrate, K.-J., Niemantsverdriet, H., Saib, A., Erasmus, W., and van de Loosdrecht, J., Catal. Today, 2020, vol. 342, p. 59.

    Article  CAS  Google Scholar 

  24. Weststrate, C.J., Ciobica, I.M., Saib, A.M., Moodley, D., and Niemantsverdriet, J., Catal. Today, 2014, vol. 228, p. 106.

    Article  CAS  Google Scholar 

  25. Bian, G.-Z., Fujishita, N., Mochizuki, T., Ning, W.-S., and Yamada, M., Appl. Catal., A, 2003, vol. 252, no. 2, p. 251.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 20-33-90155), funded by the Ministry of Education and Science of the Russian Federation (state contract no. 2019-0990), and carried out with the use of the equipment of the Nanotechnology Center for Collective Use at the Platov South-Russian State Polytechnic University (NPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mitchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: FTS, Fischer–Tropsch synthesis; TEM, transmission electron microscopy; XRD, X-ray diffraction; GHSV, gas hourly space velocity; DSC, differential scanning calorimetry; DTA, differential thermal analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soromotin, V.N., Yakovenko, R.E., Medvedev, A.V. et al. Reasons for the Rapid Deactivation of a Cobalt Catalyst in the High-Efficiency Fischer–Tropsch Synthesis of C19+ Hydrocarbons. Kinet Catal 62, 845–852 (2021). https://doi.org/10.1134/S002315842106015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842106015X

Keywords:

Navigation