Skip to main content
Log in

Effect of Re and Al2O3 Promotion on the Working Stability of Cobalt Catalysts for the Fischer–Tropsch Synthesis

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The results of the working stability studies of cobalt catalysts based on SiO2 and Al2O3 promoted with Re and Al2O3 in the synthesis of hydrocarbons from CO and H2 in continuous tests for 200–300 h are presented. The prepared catalysts were characterized by transmission electron spectroscopy, temperature-programmed reduction with hydrogen, temperature-programmed desorption of CO, and X-ray fluorescence spectroscopy and tested at a temperature 200°C, a pressure of 0.1 MPa, and a GHSV of 100 h–1. It was determined that a cobalt–silica catalyst promoted with Al2O3 had the highest activity. It was established that the addition of Al2O3 to a cobalt–silica catalyst increased the conversion of CO and selectivity for C5+ hydrocarbons and inhibited the agglomeration of Co particles under the action of a reaction atmosphere in the Fischer–Tropsch synthesis. It was found that the initial conversion of CO increased by a factor of 2 upon the introduction of 0.1 wt % rhenium into the Co/γ-Al2O3 catalyst; however, the rate of its deactivation increased in this case due to an almost twofold increase in the size of cobalt particles in the course of synthesis after operation for 300 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Prieto, G., De Mello, M.I.S., Concepcion, P., Murciano, R., Pergher, S.B.C., and Martınez, A., ACS Catal., 2015, vol. 5, p. 3323.

    Article  CAS  Google Scholar 

  2. Ellepola, J., Thijssen, N., Grievink, J., Baak, G., Avhale, A., and Schijndel, J., Comput. Chem. Eng., 2012, vol. 42, p. 2.

    Article  CAS  Google Scholar 

  3. Krylova, A.Yu., Kulikova, M.V., and Lapidus, A.L., Solid Fuel Chem., 2014, vol. 48, p. 230.

    Article  CAS  Google Scholar 

  4. Krylova, A.Yu., Solid Fuel Chem., 2014, vol. 48, p. 22.

    Article  CAS  Google Scholar 

  5. Dry, M.E., Catal. Today, 2002, vol. 71, p. 227.

    Article  CAS  Google Scholar 

  6. Kalechits, I.V., Khimicheskie veshchestva iz uglya (Chemical Substances from Coal), Moscow: Khimiya, 1980.

  7. Lapidus, A.L., Krylova, A.Yu., Mikhailova, Ya.V., Sineva, L.V., and Erofeev, A.B., Solid Fuel Chem., 2011, vol. 45, p.71.

    Article  CAS  Google Scholar 

  8. Krylova, A.Yu., Kinet. Catal., 2012, vol. 53, no. 6, p. 790.

    Article  Google Scholar 

  9. Bessell, S., Appl. Catal., A, 1993, vol. 96, p. 253.

  10. Jung, J.S., Lee, J.S., Choi, G., Ramesh, S., and Moon, D.J., Fuel, 2015, vol. 149, p. 118.

    Article  CAS  Google Scholar 

  11. Ma, W., Jacobs, G., Keogh, R.A., Bukur, D.B., and Davis, B.H., Appl. Catal., A, 2012, vols. 437–438, p. 1.

  12. Jacobs, G., Ma, W., Gao, P., Todic, B., Bhatelia, T., Bukur, D.B., Khalid, S., and Davis, B.H., Top. Catal., 2012, vol. 55, p. 811.

    Article  CAS  Google Scholar 

  13. Ghasvareh, P. and Smith, K.J., Energy Fuels, 2016, vol. 30, p. 9721.

    Article  CAS  Google Scholar 

  14. Merino, D., Perez-Miqueo, I., Sanz, O., and Montes, M., Top. Catal., 2015, vol. 59, p. 207.

    Article  Google Scholar 

  15. Bor, Ø., Eri, S., Blekkan, E.A., Storsæter, S., Wigum, H., Rytter, E., and Holmen, A., J. Catal., 2007, vol. 248, p. 89.

    Article  Google Scholar 

  16. Xiong, J., Borg, O., Blekkan, E.A., and Holmen, A., Catal. Commun., 2008, vol. 9, p. 2327.

    Article  CAS  Google Scholar 

  17. Lapidus, A.L., Pavlova, V.A., Eliseyev, O.L., Gushchin, V.V., Davydov, P.E., and Chin, N.K., Pet. Chem., 2009, vol. 49, no. 4, p. 301.

    Article  Google Scholar 

  18. Mikhailova, Ya.V., Sviderskii, S.A., Krylova, A.Yu., and Lapidus, A.L., Solid. Fuel. Chem., 2010, vol. 44, no. 5, p. 345.

    Article  Google Scholar 

  19. Narochnyi, G.B., Yakovenko, R.E., Savost’yanov, A.P., and Bakun, V.G., Katal.Prom-sti., 2016, vol. 8, no. 2, p. 37.

    Google Scholar 

  20. Prieto, G., Martínez, A., Concepción, P., and Moreno-Tost, R., J. Catal., 2009, vol. 266, p. 129.

    Article  CAS  Google Scholar 

  21. Wang, S., Yin, Q., Guo, J., Ru, B., and Zhu, L., Fuel, 2013, vol. 108, p. 597.

    Article  CAS  Google Scholar 

  22. Borg, Ø., Dietzel, P.D.C., Spjelkavik, A.I., Tveten, E.Z., Walmsley, J.C., Diplas, S., Eri, S., Holmen, A., and Rytter, E., J. Catal., 2008, vol. 259, p. 161.

    Article  CAS  Google Scholar 

  23. Tavasoli, A., Mortazavi, Y., Khodadadi, A.A., and Mousavian, M.A., Iran. J. Chem. Chem. Eng., 2005, vol. 24, p. 9.

  24. Das, T.K., Jacobs, G., Patterson, P.M., Conner, W.A., Li, J., and Davis, B.H., Fuel, 2003, vol. 82, p. 805.

    Article  CAS  Google Scholar 

  25. Borg, Ø., Hammer, N., Eri, S., Lindvag, O.A., Myrstad, R., Blekkan, E.A., Rønning, M., Rytter, E., and Holmen, A., Catal. Today, 2009, vol. 142, p. 70.

    Article  CAS  Google Scholar 

  26. Borg, Ø., Eri, S., Blekkan, E.A., Storsæter, S., Wigum, H., Rytter, E., and Holmen, A., J. Catal., 2007, vol. 248, p. 89.

    Article  CAS  Google Scholar 

  27. Tavasoli, A., Mortazavi, Y., Ali, K., Ali, A.A., Ali, M., and Ali, M., Iran. J. Chem. Chem. Eng., 2005, vol. 24, p. 9.

    CAS  Google Scholar 

  28. Zhang, Y., Nagamori, S., Hinchiranan, S., Vitidsant, T., and Tsubaki, N., Energy Fuels, 2006, vol. 20, p. 417.

    Article  CAS  Google Scholar 

  29. Pardo-Tarifa, F., Cabrera, S., Sanchez-Dominguez, M., and Boutonnet, M., Int. J. Hydrogen Energy, 2017, vol. 42, p. 9754.

    Article  CAS  Google Scholar 

  30. Fischer, N., Steen, E., and Claeys, M., J. Catal., 2013, vol. 299, p. 67.

    Article  CAS  Google Scholar 

  31. Lapidus, A.L., Krylova, A.Yu., Mikhailova, Ya.V., Sineva, L.V., and Erofeev, A.B., Solid Fuel Chem., 2011, vol. 45, no. 2, p. 71.

    Article  CAS  Google Scholar 

  32. Borg, Ø., Yu, Z., Chen, D., Blekkan, E.A., Rytter, E., and Holmen, A., Top. Catal., 2014, vol. 57, p. 491.

    Article  CAS  Google Scholar 

  33. Jacobs, G., Patterson, P.M., Zhang, Y., Das, T., Li, J., and Davis, B.H., Appl. Catal., A, 2002, vol. 233, p. 215.

  34. Dalai, A.K. and Davis, B.H., Appl. Catal., A, 2008, vol. 348, p. 1.

  35. Zhou, W., Chen, J., Fang, K., and Sun, Y.H., Fuel Process. Technol., 2006, vol. 87, p. 609.

    Article  CAS  Google Scholar 

  36. Iglesia, E., Soled, S.L., Fiato, R.A., and Via, G.H., J. Catal., 1993, vol. 143, p. 345.

    Article  CAS  Google Scholar 

  37. Khasin, A.A., Gazokhimiya, 2008, no. 2, p. 28.

  38. Botes, F.G., Niemantsverdriet, J.W., and Loosdrecht, J.A., Catal. Today, 2013, vol. 215, p. 112.

    Article  CAS  Google Scholar 

  39. Vada, S., Hoff, A., Adnanes, E., Schanke, D., and Holmen, A., Top. Catal., 1995, vol. 2, p. 155.

    Article  CAS  Google Scholar 

  40. Jacobs, G., Das, T.K., Patterson, P.M., Li, J., Sanchez, L., and Davis, B.H., Appl. Catal., A, 2003, vol. 247, p. 335.

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (state contract no. 10.2980.2017/4.6) and the President of the Russian Federation (grant no. MK-364.2019.3 for young scientists) and performed with the use of the equipment of the Nanotechnology Center of Collective Use at the Platov South-Russian State Polytechnic University (NPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Yakovenko.

Additional information

Translated by V. Makhlyarchuk

Abbreviations: FT, Fischer–Tropsch synthesis; TEM, transmission electron microscopy; TPR-H2, temperature-programmed reduction with hydrogen, TPD, temperature-programmed desorption; XRF, X-ray fluorescence analysis; and GHSV, gas hourly space velocity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Zubkov, I.N., Narochniy, G.B. et al. Effect of Re and Al2O3 Promotion on the Working Stability of Cobalt Catalysts for the Fischer–Tropsch Synthesis. Kinet Catal 61, 310–317 (2020). https://doi.org/10.1134/S0023158420020111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420020111

Keywords:

Navigation