Skip to main content
Log in

Effect of the Conditions of Solution Combustion Synthesis on the Properties of Monolithic Pt–MnOx Catalysts for Deep Oxidation of Hydrocarbons

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Catalysts based on manganese oxides, doped with Pt, and supported on ceramic monoliths with a honeycomb structure were produced by impregnation and solution combustion synthesis (SCS). In SCS, glycine was used as a fuel additive, ensuring different conditions of the combustion of depleted (φ < 1) and enriched (φ > 1) fuel mixtures. The catalysts were studied by TGA, XRD, HRTEM, TPR-H2, BET, and differential dissolution. The catalytic properties of the samples were investigated in the deep oxidation of butane and methane. It was shown that, under SCS conditions, the active components form as a finely dispersed particles of metallic platinum and manganese oxides Mn3O4 in the near-surface layers of the support. Unlike this, after the thermal treatment of the impregnated catalyst, the formed manganese oxides are enriched with Mn(IV) cations and primarily localized in the bulk of the support, forming with it an interaction phase. The high activity of the SCS catalysts in the oxidation of butane and methane is manly determined by the presence of reduced forms of manganese oxide and the accessibility of the active components for the reactants in the near-surface layers of the support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Forzatti, P., Ballardini, D., and Sighicelli, L., Catal. Today, 1998, vol. 41, p. 87.

    Article  CAS  Google Scholar 

  2. Yashnik, S.A., Ismagilov, Z.R., Porsin, A.V., Denisov, S.P., and Danchenko, N.M., Top. Catal., 2007, vols. 42–43, nos. 1–4, p. 465.

    Article  CAS  Google Scholar 

  3. Merzhanov, A.G., J. Mater. Chem., 2004, vol. 14, p. 1779.

    Article  CAS  Google Scholar 

  4. Taniguchi, K., Okinaka, N., and Akiyama, T., J. Alloys Compd., 2011, vol. 509, no. 10, p. 4084.

    Article  CAS  Google Scholar 

  5. Mossino, P., Ceram Int., 2004, vol. 30, no. 3, p. 311.

    Article  CAS  Google Scholar 

  6. Hirano, T., Tosho, T., Watanabe, T., and Akiyama, T., High Temp. Mater. Processes, 2012, vol. 31, nos. 4–5, p. 513.

    Article  CAS  Google Scholar 

  7. Kingsley, J.J. and Patil, K.C., Mater. Lett. 1988, vol. 6, p. 427.

    Article  CAS  Google Scholar 

  8. González-Cortés, S.L., Xiao, T.-C., and Green, M.L.H., Stud. Surf. Sci. Catal., 2006, vol. 162, p. 817.

    Article  Google Scholar 

  9. González-Cortés, S.L. and Imbert, F.E., Appl. Catal., A, 2013, vol. 452, p. 117.

  10. Groven, L.J., Pfeil, T.L., and Pourpoint, T.L., Int. J. Hydrogen. Energy, 2013, vol. 38, no. 15, p. 6377.

    Article  CAS  Google Scholar 

  11. Reddy, L.H., Reddy, G.K., Devaiah, D., and Reddy, B.M., Appl. Catal., A, 2012, vol. 445–446, p. 297.

  12. Mukasyan, A.S. and Dinka, P., Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, p. 23.

    Article  CAS  Google Scholar 

  13. Ghose, R., Hwang, H.T., and Varma, A., Appl. Catal., A, 2014, vol. 472, p. 39.

  14. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Chem. Rev., 2016, vol. 116, p. 14493.

    Article  CAS  PubMed  Google Scholar 

  15. Alves, A.K., Bergmann, C.P., and Berutti, F.A., Novel Synthesis and Characterization of Nanostructured Materials. Ch. 2. Combustion Synthesis, Berlin: Springer, 2013, p. 92.

  16. Zav'yalova, U.F., Tret’yakov, V.F., Burdeinaya, T.N., Lunin, V.V., Shitova, N.B., Ryzhova, N.D., Shmakov, A.N., Nizovskii, A.I., and Tsyrul’nikov, P.G., Kinet. Catal., 2005, vol. 46, p. 752.

    Article  CAS  Google Scholar 

  17. Zav’yalova, U.F., Barbashova, P.S., Lermontov, A.S., Shitova, N.B., and Tret’yakov, V.F., Burdeinaya, T.N., Lunin, V.V., Drozdov, V.A., Yashnik, S.Ya., Ismagilov, Z.R., and Tsyrul’nikov, P.G., Kinet. Catal., 2007, vol. 48, no. 1, p. 162.

    Article  CAS  Google Scholar 

  18. Sharma, S. and Hegde, M.S., Catal. Lett., 2006, vol. 112, p. 69.

    Article  CAS  Google Scholar 

  19. Russo, N., Mescia, D., Fino, D., Saracco, G., and Specchia, V., Ind. Eng. Chem. Res., 2007, vol. 46, p. 4226.

    Article  CAS  Google Scholar 

  20. Aldashukurova, G., Mironenko, A., Mansurov, Z., Shikina, N., Yashnik, S., and Ismagilov, Z., Chem. Eng. Trans., 2011, vol. 25, p. 63.

    Google Scholar 

  21. Ismagilov, Z.R., Mansurov, Z.A., Shikina, N.V., Yashnik, S.A., Aldashukurova, G.B., Mironenko, V.A., Kuznetsov, V.V., and Ismagilov, I.Z., Nanosci. Nanotechnol., 2013, vol. 3, no. 1, p. 1. https://doi.org/10.5923/j.nn.20130301.01

    Article  CAS  Google Scholar 

  22. Aldashukurova, G.B., Mironenko, A.V., Mansurov, Z.A., Shikina, N.V., Yashnik, S.A., Kuznetsov, V.V., and Ismagilov, Z.R., J. Energy Chem., 2013, vol. 22, p. 811.

    Article  CAS  Google Scholar 

  23. Piumetti, M., Fino, D., and Russo, N., Appl. Catal., B, 2015, vol. 163, p. 277.

    Article  CAS  Google Scholar 

  24. Manukyan, K.V., Cross, A., Roslyakov, S., Rouvimov, S., Rogachev, A.S., Wolf, E.E., and Mukasyan, A.S., J. Phys. Chem. 2013, vol. 117, p. 24417.

    CAS  Google Scholar 

  25. Najjar, H., Lamonier, J.-F., Mentre, O., Giraudon, J.-M., and Batis, H., Appl. Catal., B, 2011, vol. 106, p. 149.

    CAS  Google Scholar 

  26. Aruna, S.T. and Mukasyan, A.S., Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, p. 44.

    Article  CAS  Google Scholar 

  27. Nersisyan, H.H., Lee, J.H., Ding, J.R., Kim, K.-S., Manukyan, K.V., and Mukasyan, A.S., Prog. Energy Combust. Sci., 2017, vol. 63, p. 79.

    Article  Google Scholar 

  28. Twigg, M.V., Catal. Today, 2011, vol. 163, p. 33.

    Article  CAS  Google Scholar 

  29. Dinka, P. and Mukasyan, A.S., J. Phys. Chem. B, 2005, vol. 109, p. 21627.

    Article  CAS  PubMed  Google Scholar 

  30. Manukyan, K.V., Chen, Y.S., Rouvimov, S., Li, P., Li, X., Dong, S., Liu, X., Furdyna, J.K., Orlov, A., Bernstein, G.N., Porod, W., Roslyakov, S., and Mukasyan, A.S., J. Phys. Chem. C, 2014, vol. 118, p. 16264.

    Article  CAS  Google Scholar 

  31. Shikina, N.V., Yashnik, S.A., Gavrilova, A.A., Ishchenko, A.V., Dovlitova, L.S., Khairulin, S.R., and Ismagilov, Z.R., Catal. Lett., 2019, vol. 149, no. 9, p. 2535.

    Article  CAS  Google Scholar 

  32. Shikina, N.V., Yashnik, S.A., Gavrilova, A.A., Dovlitova, L.S., Khairulin, S.R., Kozlova, G.S., and Ismagilov, Z.R., Kinet. Catal., 2018, vol. 59, no. 4, p. 532.

    Article  CAS  Google Scholar 

  33. Bera, P., Patil, K.C., Jayaram, V., Subbanna, G.N., and Hegde, M.S., J. Catal., 2000, vol. 196, p. 293.

    Article  CAS  Google Scholar 

  34. Priolkar, K.R., Bera, P., Sarode, P.R., Hegde, M.S., Emura, S., Kumashiro, R., and Lalla, N.P., Chem. Mater., 2002, vol. 14, p. 2120.

    Article  CAS  Google Scholar 

  35. Bera, P., Malwadkar, S., Gayen, A., Satyanarayana, C.V.V., Rao, B.S., and Hegde, M.S., Catal. Lett., 2004, vol. 96, p. 213.

    Article  CAS  Google Scholar 

  36. Bera, P., Gayen, A., Hegde, M.S., Lalla, N.P., Spadaro, L., Frusteri, F., and Arena, F., J. Phys. Chem. B, 2003, vol. 107, p. 6122.

    Article  CAS  Google Scholar 

  37. Chourashiya, M., Gyergyek, S., and Andersen, S.M., Mater. Chem. Phys., 2020, vol. 242, p. 122444.

    Article  CAS  Google Scholar 

  38. Morfin, F., Nguyen, T.-S., Rousset, J.-L., and Piccolo, L., Appl. Catal., B, 2016, vol. 197, p. 2.

    Article  CAS  Google Scholar 

  39. Zavyalova, U., Girgsdies, F., Korup, O., Horn, R., and Schlogl, R., J. Phys. Chem. C, 2009, vol. 113, p. 17493.

    Article  CAS  Google Scholar 

  40. Royer, S. and Duprez, D., ChemCatChem, 2011, vol. 3, p. 24.

    Article  CAS  Google Scholar 

  41. Yu, W., Porosoff, M.D., and Chen, J.G., Chem. Rev., 2012, vol. 112, p. 5780.

    Article  CAS  PubMed  Google Scholar 

  42. Carno, J., Ferrandon, M., Bjornbom, E., and Jaras, S., Appl. Catal., A, 1997, vol. 155, p. 265.

  43. Ferrandon, M., Carno, J., Jaras, S., and Bjornbom, E., Appl. Catal., A, 1999, vol. 180, p. 141.

  44. Ferrandon, M., Carno, J., Jaras, S., and Bjornbom, E., Appl. Catal., A, 1999, vol. 180, p. 153.

  45. Yashnik, S.A., Kuznetsov, V.V., Ismagilov, Z.R., Ushakov, V.V., Danchenko, N.M., and Denisov, S.P., Top. Catal., 2004, vol. 30/31, p. 293.

    Article  CAS  Google Scholar 

  46. Yashnik, S.A., Ismagilov, Z.R., Kuznetsov, V.V., Ushakov, V.V., Rogov, V.A., and Ovsyannikova, I.A., Catal. Today, 2006, vol. 117, p. 525.

    Article  CAS  Google Scholar 

  47. Yashnik, S.A., Ismagilov, Z.R., Porsin, A.V., Denisov, S.P., and Danchenko, N.M., Top. Catal., 2007, vols. 42–43, nos. 1–4, p. 465.

    Article  CAS  Google Scholar 

  48. An, K., Alayoglu, S., Musselwhite, N., Plamthottam, S., Melaet, G., Lindeman, A.E., and Somorjai, G.A., J. Am. Chem. Soc., 2013, vol. 135, p. 16689.

    Article  CAS  PubMed  Google Scholar 

  49. Yashnik, S.A., Ismagilov, Z.R., Denisov, S.P., and Danchenko, N.M., Appl. Catal., B, 2016, vol. 185, p. 322.

    Article  CAS  Google Scholar 

  50. Yashnik, S.A., Ishchenko, A.V., Dovlitova, L.S., and Ismagilov, Z.R., Top. Catal., 2017, vol. 60, p. 52.

    Article  CAS  Google Scholar 

  51. Givera, A., Pavese, M., Saracco, G., and Specchia, V., Catal. Today, 2003, vol. 83, p. 199.

    Article  CAS  Google Scholar 

  52. Malakhov, V.V. and Vasil’eva, I.G., Russ. Chem. Rev., 2008, vol. 77, p. 351.

    Article  CAS  Google Scholar 

  53. Wang, X., Qin, M., Fang, F., Jia, B., Wu, H., Qu, X., and Volinsky, A.A., J. Alloys Compd., 2017, vol. 719, p. 288.

    Article  CAS  Google Scholar 

  54. El-Shobaky, G.A., El-Shobaky, H.G., Badawy, A.A.A., and Fahmy, Y.M., Appl. Catal., A, 2011, vols. 409–410, p. 234.

  55. Lu, H., Zhou, Y., Huang, H., Zhang, B., and Chen, Y., J. Rare Earths, 2011, vol. 29, p. 855.

    Article  CAS  Google Scholar 

  56. Yashnik, S.A., Gavrilova, A.A., Surovtsova, T.A., and Shikina, N.V., Vestnik Tomskogo gosudarstvennogo universiteta. Khim., 2018, no. 10, p. 45.

  57. Stobbe, E.R., de Boer, B.A., and Geus, J.W., Catal. Today. 1999, vol. 47, p. 161.

    Article  CAS  Google Scholar 

  58. Weimin, W., Yongnian, Y., and Jiayu, Z., Appl. Catal., A, 1995, vol. 133, p. 81.

  59. Kapteljn, F., Smgoredjo, L., Andreml, A., and Moljin, J.A., Appl. Catal., B, 1994, vol. 3, p. 173.

    Article  Google Scholar 

  60. Carvalho, L.S., Pieck, C.L., Rangel, M.C., Figoli, N.S., Grau, J.M., Reyes, P., and Parera, J.M., Appl. Catal., A, 2004, vol. 269, p. 91.

  61. Lieske, H., Lietz, G., Spindler, H., and Volter, J., J. Catal., 1983, vol. 81, p. 8.

    Article  CAS  Google Scholar 

  62. Lietz, G., Lieske, H., Spindler, H., Hamker, W., and Volter, J., J. Catal., 1983, vol. 81, p. 17.

    Article  CAS  Google Scholar 

  63. Santos, A.C.S.F., Damyanova, S., Teixeira, G.N.R., Mattos, L.V., Noronha, F.B., Passos, F.B., and Bueno, J.M.C., Appl. Catal., A, 2005, vol. 290, p. 123.

  64. Bukhtiyarov, V.I. and Slin’ko, M.G., Russ. Chem. Rev., 2001, vol. 70, no. 2, p. 147.

    Article  CAS  Google Scholar 

  65. Khadzhiev, S.N., Pet. Chem., 2011, vol. 51, no. 1, p. 1.

    Article  CAS  Google Scholar 

  66. Popov, Yu.V., Mokhov, V.M., Nebykov, D.N., and Budko, I.I., Izv. VGTU, 2014, vol. 12, no. 7, p. 5.

    Google Scholar 

  67. Chen, J., Arandiyan, H., Gao, X., and Li, J., Catal. Surv. Asia, 2015, vol. 19, p. 140.

    Article  CAS  Google Scholar 

  68. Boudart, M., Aldag, A., Benson, J.E., Dougharty, N.A., and Girvin, C., J. Catal., 1966, vol. 6, p. 92.

    Article  CAS  Google Scholar 

  69. Boudart, M., Adv. Catal., 1969, vol. 20, p. 153.

    CAS  Google Scholar 

  70. Gololobov, A.M., Bekk, I.E., Bragina, G.O., Zaikovskii, V.I., Ayupov, A.B., Telegina, N.S., Bukhtiyarov, V.I., and Stakheev, A.Yu., Kinet. Catal., 2009, vol. 50, no. 6, p. 830.

    Article  CAS  Google Scholar 

  71. Stakheev, A.Yu., Gololobov, A.M., Bekk, I.E., Bragina, G.O., Zaikovskii, V.I., Ayupov, A.B., Telegina, N.S., and Bukhtiyarov, V.I., Russ. Chem. Bull., 2010, no. 9, p. 1667.

  72. Beck, I.E., Bukhtiyarov, V.I., Pakharukov, I.Yu., Zaikovsky, V.I., Kriventsov, V.V., and Parmon, V.N., J. Catal., 2009, vol. 268, no. 1, p. 60.

    Article  CAS  Google Scholar 

  73. Otto, K., Andino, J.M., and Parks, C.L., J. Catal., 1991, vol. 131, p. 243.

    Article  CAS  Google Scholar 

  74. Briot, P., Auroux, A., Jones, D., and Primet, M., Appl. Catal., 1990, vol. 59, p. 141.

    Article  CAS  Google Scholar 

  75. Burch, R. and Loader, R.K., Appl. Catal., A, 1995, vol. 122, p. 169.

  76. Meephoka, C., Chaisuk, C., Samparnpiboon, P., and Praserthdam, P., Catal. Commun., 2008, vol. 9, p. 546.

    Article  CAS  Google Scholar 

  77. Tiernan, M.J. and Finlayson, O.E., Appl. Catal., B, 1998, vol. 19, p. 23.

    Article  CAS  Google Scholar 

  78. Yashnik, S.A., Shikina, N.V., Gavrilova, A.A., Surovtsova, T.A., and Ismagilov, Z.R., Khim. Interesah Ustoich. Razvit., 2019, vol. 27, p. 211.

    CAS  Google Scholar 

  79. Tsyrulnikov, P.G., Tsybulya, S.V., Kryukova, G.N., Boronin, A.I., Koscheev, S.V., Starostina, T.G., Bubnov, A.V., and Kudrya, E.N., J. Mol. Catal. A, 2002, vol. 179, p. 213.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank V. A. Ushakov and M. S. Mel’gunov, Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia, for help in performing physicochemical investigations.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-43-540017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shikina.

Additional information

Translated by V. Glyanchenko

Abbreviations: XRF, X-ray fluorescence analysis; DSC, differential scanning calorimetry; TG, thermogravimetry; TGA, thermogravimetric analysis; XRD, X-ray powder diffraction analysis; HRTEM, high-resolution transmission electron microscopy; HAADF-STEM, high-angle annular dark field scanning transmission electron microscopy; TPR-H2, temperature-programmed reduction by hydrogen; BET, Brunauer–Emmett–Teller method; SHS, self-propagating high-temperature synthesis; SCS, solution combustion synthesis; and DD, differential dissolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikina, N.V., Yashnik, S.A., Gavrilova, A.A. et al. Effect of the Conditions of Solution Combustion Synthesis on the Properties of Monolithic Pt–MnOx Catalysts for Deep Oxidation of Hydrocarbons. Kinet Catal 61, 809–823 (2020). https://doi.org/10.1134/S0023158420050110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420050110

Keywords:

Navigation