Skip to main content
Log in

Structural, Textural Properties and Catalytic Activity of Ni–Mn Mixed Oxides in the Combustion of Toluene at Low-Temperatures

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Toluene combustion was investigated over Ni–Mn mixed oxides as catalysts. Materials were synthesized via: (i) coprecipitation (CP) using ammonium oxalate, (ii) complexation (CPx) using citric acid. Two Mn/Ni various ratios were used: (i) Mn/Ni = 1:1 (noted NiMn1-ox for CP and NiMn1-cit for CPx), (ii) Mn/Ni = 2:1 (noted NiMn2-ox and NiMn2-cit). All precursors were calcined at 500 °C/3 h in order to obtain Ni–Mn mixed oxides. Structural and textural properties of precursors and catalysts were characterized by FTIR, XRD, AAS, SEM–EDX, BET techniques and reducibility of samples was studied by H2-TPR. FTIR spectroscopy confirmed the presence of citrate and oxalate compounds in the Ni–Mn precursors (uncalcined solids). XRD pattern of NiMn1-ox exhibited only ilmenite phase (NiMnO3) and NiMn2-ox was indexed with mixture of ilmenite and bixbyite (Mn2O3). For both NiMn1-cit and NiMn2-cit, diffractogramms showed mixture of ilmenite and spinel (NiMn2O4). SEM micrographs of CPx formulations showed particular morphology with presence of cavities due to abrupt departure of citrates under calcination. Catalytic activity of materials was evaluated in combustion of toluene as a function of reaction temperature. Despite their low surface area, all catalysts show a certain catalytic activity in combustion of toluene. At low temperature, CP materials (composed mostly of NiMnO3) showed the highest catalytic activity compared to those of CPx catalysts (mixture of NiMnO3 and NiMn2O3). The best catalytic performance, with high toluene conversion (up 99% at T < 250 °C), was achieved on monophasic NiMn1-ox probably as a consequence of its high homogeneity (with Mn/Niexp ~ Mn/Nitheo), high porous volume, good crystallinity and presence of the Mn4+ cations as more effective active sites in the toluene chemisorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mozaffar, A.; Zhang, Y.-L.: Atmospheric volatile organic compounds (VOCs) in china: a review. Curr. Pollut. Rep. 6, 250–263 (2020). https://doi.org/10.1007/s40726-020-00149-1

    Article  Google Scholar 

  2. Dinh, T.V.; Choi, I.Y.; Son, Y.S.; Song, K.Y.; Sunwoo, Y.; Kim, J.C.: Volatile organic compounds (VOCs) in surface coating materials: their compositions and potential as an alternative fuel. J. Environ. Manag. 168, 157–164 (2016). https://doi.org/10.1016/j.jenvman.2015.11.059

    Article  Google Scholar 

  3. Liu, W.; Hegglin, M.I.; Checa-Garcia, R.; Li, S.; Gillett, N.P.; Lyu, K.; Zhang, X.; Swart, N.C.: Stratospheric ozone depletion and tropospheric ozone increases drive southern ocean interior warming. Nat. Clim. Chang. 12, 365–372 (2022). https://doi.org/10.1038/s41558-022-01320-w

    Article  Google Scholar 

  4. da Silva, G.; Chen, C.-C.; Bozzelli, J.W.: Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction. J. Phys. Chem. A 35, 8663–8676 (2007). https://doi.org/10.1021/jp068640x

    Article  Google Scholar 

  5. Lillo-Ródenas, M.A.; Cazorla-Amorós, D.; Linares-Solano, A.: Benzene and toluene adsorption at low concentration on activated carbon fibres. Adsorption 17, 473–481 (2011). https://doi.org/10.1007/s10450-010-9301-7

    Article  Google Scholar 

  6. Ji, Y.; Zhao, J.; Terazono, H.: Reassessing the atmospheric oxidation mechanism of toluene. Proc. Natl. Acad. Sci. (PNAS) 114, 8169–8174 (2017). https://doi.org/10.1073/pnas.1705463114

    Article  Google Scholar 

  7. Wang, C.-H.: Al2O3–supported transition-metal oxide catalysts for catalytic incineration of toluene. Chemosphere 55, 11–17 (2004). https://doi.org/10.1016/j.chemosphere.2003.10.036

    Article  Google Scholar 

  8. Zhang, M.; Liu, X.; Zeng, X.; Wang, M.; Shen, J.; Liu, R.: Photocatalytic degradation of toluene by In2S3/g–C3N4 heterojunctions. Chem. Phys. Lett. 738, 100049 (2020). https://doi.org/10.1016/j.cpletx.2020.100049

    Article  Google Scholar 

  9. Rokicińska, A.; Drozdek, M.; Dudek, B.; Gil, B.; Michorczyk, P.; Brouri, D.; Dzwigaj, S.; Kuśtrowski, P.: Cobalt-containing BEA zeolite for catalytic combustion of toluene. Appl. Catal. B Environ. 212, 59–67 (2017). https://doi.org/10.1016/j.apcatb.2017.04.067

    Article  Google Scholar 

  10. Zou, S.; Zhang, M.; Mo, S.; Cheng, H.; Fu, M.; Chen, P.; Chen, L.; Shi, W.; Ye, D. : Catalytic Performance of Toluene Combustion over Pt Nanoparticles Supported on Pore-Modified Macro-Meso-Microporous Zeolite Foam. Nanomaterials (MDPI), 10, 30 (2020). https://doi.org/10.3390/nano10010030

    Article  Google Scholar 

  11. Jiao, L.; Liu, H.; Qu, L.; Xue, Z.; Wang, Y.; Wang, Y.; Lei, B.; Zang, Y.; Xu, R.; Zhang, Z.; Li, H.; Alyemeni, O.A.A.: QSPR studies on the octane number of toluene primary reference fuel based on the electrotopological state index. ACS Omega 5, 3878–3888 (2020). https://doi.org/10.1021/acsomega.9b03139

    Article  Google Scholar 

  12. Sun, Y.; Li, N.; Xing, X.; Zhang, X.; Zhang, Z.; Wang, G.; Cheng, J.; Hao, Z.: Catalytic oxidation performances of typical oxygenated volatile organic compounds (acetone and acetaldehyde) over MAlO (M= Mn Co, Ni, Fe) hydrotalcite-derived oxides. Catal. Today 327, 389–397 (2019). https://doi.org/10.1016/j.cattod.2018.03.002

    Article  Google Scholar 

  13. Liotta, L.F.: Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B Environ. 100, 403–412 (2010). https://doi.org/10.1016/j.apcatb.2010.08.023

    Article  Google Scholar 

  14. Barbero, B.P.; Costa-Almeida, L.; Sanz, O.; Morales, M.R.; Cadus, L.-E.; Montes, M.: Washcoating of metallic monoliths with a Mn–Cu catalyst for catalytic combustion of volatile organic compounds. Chem. Eng. J. 139, 430–435 (2008). https://doi.org/10.1016/j.cej.2007.12.033

    Article  Google Scholar 

  15. Morales, M.R.; Barbero, B.P.; Cadús, L.E.: Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts. Appl. Catal. B: Environ. 74, 1–10 (2007). https://doi.org/10.1016/j.apcatb.2007.01.008

    Article  Google Scholar 

  16. Huang, Q.; Zhang, Z.-Y.; Ma, W.-J.; Chen, Y.-W.; Zhu, S.-M.; Shen, S.-B.: A novel catalyst of Ni–Mn complex oxides supported on cordierite for catalytic oxidation of toluene at low temperature. J. Ind. Eng. Chem. Res. 18, 757–762 (2012). https://doi.org/10.1016/j.jiec.2011.11.129

    Article  Google Scholar 

  17. Chai Kim, S.; Park, Y.-K.; Woon Nah, J.: Property of a highly active bimetallic catalyst based on a supported manganese oxide for the complete oxidation of toluene. Powder Technol. 266, 292–298 (2014). https://doi.org/10.1016/j.powtec.2014.06.049

    Article  Google Scholar 

  18. Chu, W.; Yang, W.; Lin, L.: Selective oxidation of methane to syngas over NiO/barium hexaaluminate. Catal. Lett. 74, 139–144 (2001). https://doi.org/10.1023/A:1016622301743

    Article  Google Scholar 

  19. Hadj-Sadok Ouaguenouni, M.; Benadda, A.; Kiennemann, A.; Barama, A.: Preparation and catalytic activity of nickel-manganese oxide catalysts in the reaction of partial oxidation of methane. C.R Chimie 12, 740–747 (2009). https://doi.org/10.1016/j.crci.2008.12.002

    Article  Google Scholar 

  20. Pan, Y.; Shen, X.; Yao, L.; Bentalib, A.; Peng, Z.: Active sites in heterogeneous catalytic reaction on metal and metal oxide: theory and practice. Catalysts 8, 478 (2018). https://doi.org/10.3390/catal8100478

    Article  Google Scholar 

  21. Dong, Y.; Zhao, J.; Zhang, J.-Y.; Chen, Y.; Yang, X.; Song, W.; Wei, L.; Li, W.: Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni–doped α–MnO2 catalysts. Chem. Eng. Technol. 388, 124244 (2020). https://doi.org/10.1016/j.cej.2020.124244

    Article  Google Scholar 

  22. Djaidja, A.; Libs, S.; Kiennemann, A.; Barama, A.: Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts. Catal. Today 113, 194–200 (2006). https://doi.org/10.1016/j.cattod.2005.11.066

    Article  Google Scholar 

  23. Benrabaa, R.; Boukhlouf, H.; Löfberg, A.; Rubbens, A.; Vannier, R.-N.; Bordes-Richard, E.; Barama, A.: Nickel ferrite spinel as catalyst precursor in the dry reforming of methane: synthesis, characterization and catalytic properties. J. Nat. Gas Chem. 21, 595–604 (2012). https://doi.org/10.1016/S1003-9953(11)60408-8

    Article  Google Scholar 

  24. Rouibah, K.; Barama, A.; Benrabaa, R.; Guerrero-Caballero, J.; Kane, T.; Vannier, R.-N.; Rubbens, A.; Löfberg, A.: Dry reforming of methane on nickel-chrome, nickel-cobalt and nickel-manganese catalysts. Int. J. Hydrog. Energy 42, 29725–29734 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.049

    Article  Google Scholar 

  25. Messaoudi, H.; Thomas, S.; Djaidja, A.; Slyemi, S.; Barama, A.: Study of LaxNiOy and LaxNiOy/MgAl2O4 catalysts in dry reforming of methane. J. CO2 Util. 24, 40–49 (2018). https://doi.org/10.1016/j.jcou.2017.12.002

    Article  Google Scholar 

  26. Duplančić, M.; Tomašić, V.; Gomzi, Z.: Catalytic oxidation of toluene: comparative study over powder and monolithic manganese-nickel mixed oxide catalysts. Environ. Technol. 39, 2004–2016 (2018). https://doi.org/10.1080/09593330.2017.1346713

    Article  Google Scholar 

  27. Sui, Z.J.; Vradman, L.; Reizner, I.; Landau, M.V.; Herskowitz, M.: Effect of preparation method and particle size on LaMnO3 performance in butane oxidation. Catal. Commun. 12, 1437–1441 (2011). https://doi.org/10.1016/j.catcom.2011.06.001

    Article  Google Scholar 

  28. Guillemet-Fritsch, S.; Salmi, J.; Sarrias, J.; Rousset, A.; Schuurman, S.; Lannoo, A.: Mechanical properties of nickel manganites-based ceramics used as negative temperature coefficient thermistors (NTC). Mater. Res. Bull. 39, 1957–1965 (2004). https://doi.org/10.1016/j.materresbull.2004.05.020

    Article  Google Scholar 

  29. Sinquin, G.; Petit, C.; Hindermann, J.P.; Kiennemann, A.: Study of the formation of LaMO3 (M=Co, Mn) perovskites by propionates precursors: application to the catalytic destruction of chlorinated VOCs. Catal. Today 70, 183–196 (2001). https://doi.org/10.1016/S0920-5861(01)00417-5

    Article  Google Scholar 

  30. Potdar, H.S.; Deshpande, S.B.; Date, S.K.: Chemical coprecipitation of mixed (Ba+Ti) oxalates precursor leading to BaTiO3 powders. Mater. Chem. Phys. 58, 121–127 (1999). https://doi.org/10.1016/S0254-0584(98)00262-4

    Article  Google Scholar 

  31. Şabikoğlu, İ: FTIR and VSM properties of samarium-doped nickel ferrite. Funct. Mater. Lett. 7, 1450046 (2014). https://doi.org/10.1142/S1793604714500465

    Article  Google Scholar 

  32. Ito, K.; Bernstein, H.J.: The irrational spectra of the formate, acetate, and oxalate ions. Can. J. Chem. 34, 170–178 (2011). https://doi.org/10.1139/v56-021

    Article  Google Scholar 

  33. Petit, I.; Belletti, G.D.; Debroise, T.; Lansola-Portoles, M.J.; Lucas, I.T.; Leroy, C.; Bonhomme, C.; Bonhomme-Coury, L.; Bazin, D.; Daudon, M.; Letavernier, E.; Haymann, J.-P.; Frochot, V.; Babonneau, F.; Quaino, P.; Tielens, F.: Vibrational signatures of calcium oxalate polyhydrates. Chem. Sel. 3, 8801–8812 (2018). https://doi.org/10.1002/slct.201801611

    Article  Google Scholar 

  34. Taguchi, H.; Matsu-ura, S.-I.; Nagao, M.; Choso, T.; Tabata, K.: Synthesis of LaMnO3+δ by firing gels using citric acid. J. Solid State Chem. 129, 60–65 (1997). https://doi.org/10.1006/jssc.1996.7229

    Article  Google Scholar 

  35. Baker, E.N.; Baker, H.M.; Anderson, B.F.; Reeves, R.D.: Chelation of nickel(II) by citrate. The crystal structure of a nickel–citrate complex, K2[Ni(C6H5O7)(H2O)2]2·4H2O. Inorg. Chim. Acta 78, 281–285 (1983). https://doi.org/10.1016/S0020-1693(00)86530-5

    Article  Google Scholar 

  36. Mehandjiev, D.; Naydenov, A.; Ivanov, G.: Ozone decomposition, benzene and CO oxidation over NiMnO3-ilmenite and NiMn2O4-spinel catalysts. Appl. Catal. A Gen. 206, 13–18 (2001). https://doi.org/10.1016/S0926-860X(00)00570-6

    Article  Google Scholar 

  37. Tang, W.; Li, J.; Wu, X.; Chen, Y.: Limited nanospace for growth of Ni–Mn composite oxide nanocrystals with enhanced catalytic activity for deep oxidation of benzene. Catal. Today 258, 148–155 (2015). https://doi.org/10.1016/j.cattod.2015.04.023

    Article  Google Scholar 

  38. Tang, W.; Deng, Y.; Li, W.; Li, J.; Liu, G.; Li, S.; Wu, X.; Chen, Y.: Importance of porous structure and synergistic effect on the catalytic oxidation activities over hierarchical Mn–Ni composite oxides. Catal. Sci. Technol. 6, 1710–1718 (2016). https://doi.org/10.1039/C5CY01119A

    Article  Google Scholar 

  39. Duangsa, K.; Tangtrakarn, A.; Mongkolkachit, C.; Aungkavattana, P.; Moolsarn, K.: The effect of tartaric acid and citric acid as a complexing agent on defect structure and conductivity of copper samarium co-doped ceria prepared by a sol-gel auto-combustion method. Adv. Mater. Sci. Eng. 44, 1–23 (2021). https://doi.org/10.1155/2021/5592437

    Article  Google Scholar 

  40. Hammami, R.; Batis, H.: Combustion synthesized crystalline La–Mn perovskite catalysts: role of fuel molecule on thermal and chemical events. Arab. J. Chem. 13, 683–693 (2020). https://doi.org/10.1016/j.arabjc.2017.07.009

    Article  Google Scholar 

  41. Nischwitz, V.; Michalke, B.: Electrospray ionisation with selected reaction monitoring for the determination of Mn–citrate, Fe–citrate, Cu–citrate and Zn–citrate. Rapid Commun. Mass Spectrom. 23, 2338–2346 (2009). https://doi.org/10.1002/rcm.4156

    Article  Google Scholar 

  42. Strouse, J.; Layten, S.W.; Strouse, C.E.: Structural studies of transition metal complexes of triionized and tetraionized citrate, models for the coordination of the citrate ion to transition metal ions in solution and at the active site of aconitase. J. Am. Chem. Soc. 99, 562–572 (1977). https://doi.org/10.1021/ja00444a041

    Article  Google Scholar 

  43. Doi, T.; Mizumoto, K.: Effect of bath pH on nickel citrate electroplating bath. Met. Finish. 102, 104–111 (2004). https://doi.org/10.1016/S0026-0576(04)82610-2

    Article  Google Scholar 

  44. Rammal, M.B.; Omanovic, S.: Part I: NiMoO4 nanostructures synthesized by the solution combustion method: a parametric study on the influence of synthesis parameters on the materials, physicochemical, structural, and morphological properties. Molecules 27, 776 (2022). https://doi.org/10.3390/molecules27030776

    Article  Google Scholar 

  45. Zdravkov, B.; Čermák, J.; Šefara, M.; Janků, J.: Pore classification in the characterization of porous materials: a perspective. Open Chem. J. 5, 385–395 (2007). https://doi.org/10.2478/s11532-007-0017-9

    Article  Google Scholar 

  46. Barama, S.; Dupeyrat-Batiot, C.; Capron, M.; Bordes-Richard, E.; Bakhti-Mohammedi, O.: Catalytic properties of Rh, Ni, Pd and Ce supported on Al–pillared montmorillonites in dry reforming of methane. Catal. Today 141, 385–392 (2009). https://doi.org/10.1016/j.cattod.2008.06.025

    Article  Google Scholar 

  47. Stobbe, E.R.; De Boer, B.A.; Geus, J.W.: The reduction and oxidation behaviour of manganese oxides. Catal. Today 47, 161–167 (1999). https://doi.org/10.1016/S0920-5861(98)00296-X

    Article  Google Scholar 

  48. Christel, L.; Pierre, A.; Duprat, A.-M.; Rousset, A.: Temperature programmed reduction studies of nickel manganite spinels. Thermochim. Acta 306, 51–59 (1997). https://doi.org/10.1016/S0040-6031(97)00299-2

    Article  Google Scholar 

  49. Baylet, A.; Royer, S.; Labrugère, C.; Valencia, H.; Marecot, P.; Tatibouet, J.M.; Duprez, D.: Effect of palladium on the reducibility of Mn based materials: correlation with methane oxidation activity. Phys. Chem. Chem. Phys. 10, 5983–5992 (2008). https://doi.org/10.1039/B808289H

    Article  Google Scholar 

  50. Rynkowski, J.M.; Paryjczak, T.; Lenik, M.: On the nature of oxidic nickel phases in NiO/γ–Al2O3 catalysts. Appl. Catal. A 106, 73–82 (1993). https://doi.org/10.1016/0926-860X(93)80156-K

    Article  Google Scholar 

  51. De Bokx, P.K.; Wassenberg, W.B.A.; Geus, J.W.: Interaction of nickel ions with a γ–Al2O3 support during deposition from aqueous solution. J. Catal. 104, 86–98 (1987). https://doi.org/10.1016/0021-9517(87)90339-3

    Article  Google Scholar 

  52. Sonar, S.; Giraudon, J.-M.; Perumal Veerapandian, S.K.; Bitar, R.; Leus, K.; Van Der Voort, P.; Lamonier, J.-F.; Morent, R.; De Geyter, N.; Löfberg, A.: Abatement of toluene using a sequential adsorption-catalytic oxidation process: comparative study of potential adsorbent/catalytic materials. Catalysts 10, 761 (2020). https://doi.org/10.3390/catal10070761

    Article  Google Scholar 

  53. Lin, R.; Liu, W.-P.; Zhong, Y.-J.; Luo, M.-F.: Catalyst characterization and activity of Ag–Mn complex oxides. Appl. Catal. A 220, 165–171 (2001). https://doi.org/10.1016/S0926-860X(01)00718-9

    Article  Google Scholar 

  54. Liu, P.; He, H.; Wei, G.; Liu, D.; Liang, X.; Chen, T.; Zhu, J.; Zhu, R.: An efficient catalyst of manganese supported on diatomite for toluene oxidation: manganese species, catalytic performance, and structure-activity relationship. Microporous Mesoporous Mater. 239, 101–110 (2017). https://doi.org/10.1016/j.micromeso.2016.09.053

    Article  Google Scholar 

  55. Sihaib, Z.; Puleo, F.; Garcia-Vargas, J.M.; Retailleau, L.; Descorme, C.; Liotta, L.F.; Valverde, J.L.; Gil, S.; Giroir-Fendler, A.: Manganese oxide-based catalysts for toluene oxidation. Appl. Catal. B: Environ. 209, 689–700 (2017). https://doi.org/10.1016/j.apcatb.2017.03.042

    Article  Google Scholar 

Download references

Acknowledgements

In this work, authors warmly thank Mrs. Nacéra Lamine for the realization of catalytic experiments.

Author information

Authors and Affiliations

Authors

Contributions

Prof. A. Barama carried out the conceptualization and supervision of this research work; she wrote this paper and given interpretations of results and conclusions. Dr. M. Hadj-Sadok-Ouaguenouni has taken in charge of all formal analysis and acquisitions of results; she performed all physicochemical characterizations. Assoc-Prof. S. Barama has participated in the writing of manuscript; she took care of literature searching and characterizations investigations, as well as formatting of all figures and tables; also she taken in charge of the review/editing.

Corresponding author

Correspondence to Akila Barama.

Ethics declarations

Conflicts of interest

Authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barama, A., Hadj-Sadok Ouaguenouni, M. & Barama, S. Structural, Textural Properties and Catalytic Activity of Ni–Mn Mixed Oxides in the Combustion of Toluene at Low-Temperatures. Arab J Sci Eng 48, 8679–8692 (2023). https://doi.org/10.1007/s13369-022-07276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07276-5

Keywords

Navigation