Skip to main content
Log in

Mechanochemical Synthesis as an Alternative Effective Technique for the Preparation of the Composite Catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstarct

—Mechanochemical synthesis in a ball mill was applied for the nanocomposite Cu(CuO)–CeO2 catalyst preparation from CeO2 and following dopants: Cu metal and copper oxides of different morphology and composition (CuO pure and CuO containing 4 or 16.5 wt % of Cu2O). The materials obtained were examined with the use of X-ray phase analysis, scanning electron microscopy, temperature-programmed reduction in CO, H2, C2H6 (TPR-СО, TPR-Н2, and TPR-С2Н6), and tested as catalysts in reactions of selective CO oxidation in H2 excess (CO-PROX) and total C2H6 oxidation. New forms of oxygen with high low-temperature reactivity towards CO, H2, and C2H6 were found by TPR in the samples synthesized. It was shown that CO conversion was slightly affected by the dopant nature in the dopant-CeO2 mixture. Contrary, C2H6 conversion at low temperatures depends on dopant composition. The highest C2H6 conversion at 400°С (91.4%) was observed on Cu–CeO2. The lowest one (54.2%) was observed on CuO–CeO2. As was demonstrated, mechanochemical synthesis is a universal technique to produce copper oxide–ceria catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Liu, W. and Stephanopoulos, M., J. Catal., 1995, vol. 153, p. 304.

    Article  CAS  Google Scholar 

  2. Yang, W., Li, D., Xu, D., and Wang, X., J. Nat. Gas Chem., 2009, vol. 18, p. 458.

    Article  CAS  Google Scholar 

  3. Yao, S.Y., Xu, W.Q., Johnston-Peck, A.C., Zhao, F.Z., Liu, Z.Y., Luo, S., Senanayake, S.D., Martinez-Arias, A., Liu, W.J. and Rodriguez, J.A., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 17183.

    Article  CAS  Google Scholar 

  4. Chiu, K.L., Kwong, F.-I., and Ng Dickon, H.L., Curr. Appl. Phys., 2012, vol. 12, issue 4, p. 1195.

    Article  Google Scholar 

  5. Yao, X., Gao, F., Yu, Q., Qi, L., Tang, Ch., Dong, L., and Chen, Y., Catal. Sci. Technol., 2013, vol. 3, p. 1355.

    Article  CAS  Google Scholar 

  6. Kydd, R., Teoh, W.Y., Wong, K., Wang, Y., Scott, J., Zeng, Q.-H., Yu, A.-B., Zou, J., and Amal, R., Adv. Funct. Mater., 2009, vol. 19, p. 369.

    Article  CAS  Google Scholar 

  7. Chen, A., Yu, X., Zhou, Y., Miao, Sh., Li, Y., Kuld, S., Sehested, J., Liu, J., Aoki, T., Hong, S., Camellone, M.F., Fabris, S., Ning, J., Jin, Ch., Yang, Ch., Nefedov, A., Wöll, Ch., Wang, Y., and Shen, W., Nat. Catal., 2019, vol. 2, p. 334.

    Article  CAS  Google Scholar 

  8. Yu, W.-Zh., Wang, W.-W., Fu, X.-Pu, Wang, X., Wu, K., Si, R., Ma, Ch., Jia, Ch.-J., and Yan, Ch.H., J. Am. Chem. Soc., 2019, vol. 141, issue 44, p. 17548.

    Article  CAS  Google Scholar 

  9. Skårman, B., Nakayama, T., Grandjean, D., Benfild, R.E., Olsson, E., Niihara, K., and Wallenberg, L.R., Chem. Mater., 2002, vol. 14, p. 3686.

    Article  Google Scholar 

  10. Wongkaew, A., Kongsi, W., and Limsuwan, P., Adv. Mater. Sci. Eng., 2013, ID 374080.

  11. Gurbani, A., Ayastuy, J.L., González-Marcos, M.P., and Gutiérrez-Ortiz, M.A., Int. J. Hydrogen Energy, 2010, vol. 35, p. 11582.

    Article  CAS  Google Scholar 

  12. Prasad, R. and Rattan, G., Bull. Chem. React. Eng. Catal., 2010, vol. 5, p. 7.

    Article  CAS  Google Scholar 

  13. Liu, Z., Zhou, R., and Zheng, X., J. Mol. Catal., 2007, vol. 267, p. 137.

    Article  CAS  Google Scholar 

  14. Martínez-Arias, A., Gamarra, D., Hungría, A.B., Fernández-García, M., Munuera, G., Hornés, A., Bera, P., Conesa, J.C., and Cámara, A.L., Catal., 2013, vol. 3, p. 378.

    Article  Google Scholar 

  15. Martínez-Arias, A., Gamarra, D., Fernández-García, M., Hornés, A., Bera, P., Koppány, Zs., and Schay, Z., Catal. Today, 2009, vol. 143, p. 211.

    Article  Google Scholar 

  16. Xu, Ch., De, S., Balu, F.V., Ojeda, M., and Luque, R., Chem. Commun., 2015, vol. 31. I. 51, p. 6698.

  17. Borchers, Ch., Martin, M.L., Vorobjeva, G.A., Morozova, O.S., Firsova, A.A., Leonov, A.V., Kurmaev, E.Z., Kukharenko, A.I., Zhidkov, I.S., and Cholakh, S.O., J. Nanopart. Res., 2016, vol. 18, p. 344.

    Article  Google Scholar 

  18. Firsova, A.A., Morozova, O.S., Leonov, A.V., Streletskii, A.N., and Korchak, V.N., Kinet. Catal., 2014, vol. 55, no. 6, p. 777.

    Article  CAS  Google Scholar 

  19. Galvita, V., Filez, M., Poelman, H., Bliznuk, V., and Marin, G.B., Catal. Lett., 2014, vol. 144, p. 43.

    Article  Google Scholar 

  20. Shelekhov, E.V. and Sviridova, T.A., Met. Sci. Heat. Treat., 2000, vol. 42, p. 309.

    Article  CAS  Google Scholar 

  21. Il’ichev, A.N., Firsova, A.A., and Korchak, V.N., Kinet. Catal., 2006, vol. 47, p. 585.

    Article  Google Scholar 

  22. Borchers, Ch., Martin, M.L., Vorobjeva, G.A., Morozova, O.S., Firsova, A.A., Leonov, A.V., Kurmaev, E.Z., Kukharenko, A.I., Zhidkov, I.S., and Cholakh, S.O., AIP Adv., 2019, vol. 9, p. 065 115.

    Article  Google Scholar 

  23. Zeng, Sh., Zhang, W., Śliwa, M., and Su, H., Int. J. Hydrogen Energy, 2013, vol. 38, p. 3597.

    Article  CAS  Google Scholar 

  24. Tang, X., Zhang, B., Li, Y., Xu, Y., Xin, Q., and Shen, W., Appl. Catal., A, 2005, vol. 288, p. 116.

  25. Xu, J., Harmer, J., Li, G., Chapman, T., Collier, P., Longworth, S., and Tsang, S.C., Chem. Commun., 2010, vol. 46. 1887.

    Article  CAS  Google Scholar 

  26. Moretti, E., Lenardaa, M., Riello, P., Storaro, L., Talon, A., Frattini, R., Reyes-Carmona, A., Jimenez-Lopez, A., and Rodriguez-Castellon, E., Appl. Catal., B, 2013, vol. 129, p. 556.

    Article  CAS  Google Scholar 

  27. Qi, X. and Flytzani-Stephanopoulos, M., Ind. Eng. Chem. Res., 2004, vol. 43, p. 3055.

    Article  CAS  Google Scholar 

  28. Polster, Ch.P., Nair, H., and Baertsch, C.D., J. Catal., 2009, vol. 266, p. 308.

    Article  CAS  Google Scholar 

  29. Barbato, P.S., Colussi, S., Di Benedetto, A., Landi, G., Lisi, L., Llorca, J., and Trovarelli, A., J. Phys. Chem. C, 2016, vol. 120, p. 13 039.

    Article  Google Scholar 

  30. Natile, M.M., Galenda, A., and Glisenti, A., Surf. Sci. Spectra, 2009, vol. 16, p. 13.

    Article  CAS  Google Scholar 

  31. Di Benedetto, A., Landi, G., and Lisi, L., Catalyst, 2018, vol. 8. I. 5, p. 209.

  32. Sundar, R.S. and Deevi, S., J. Nanopart. Res., 2006, vol. 8, p. 497.

    Article  CAS  Google Scholar 

  33. Zhan, W., Yang, S., Zhang, P., Guo, Y., Lu, G., Chisholm, M.F., and Dai, Sh., Chem. Mater., 2017, vol. 29. I. 17, p. 7323.

  34. Holgado, P., Manuera, G., Espinos, J.P., and Gonzanez-Elipe, A.R., Appl. Surf. Sci., 2000, vol. 158, p. 164.

    Article  CAS  Google Scholar 

  35. Luo, M.-F., Song, Yu.-P., Lu, Ji.-Q., Wang, X.-Yu., and Pu, Zh.-Y., J. Phys. Chem. C, 2007, vol. 111, p. 12686.

    Article  CAS  Google Scholar 

  36. Luong, N.N., Okumura, H., Yamasue, E., and Ishihara, K.N., R. Soc. Open Sci., 2019, vol. 6, p. 181861.

    Article  CAS  Google Scholar 

  37. Pidko, E. and Kazansky, V., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 1939.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to N.G. Berezkina (N.N. Semenov FRC for Chemical Physics) for the SEM measurements of the catalysts.

Funding

This work was partially supported by the Russian Foundation for Basic Research, grant 19-03-00358 and within the framework of the state assignment of Russia (Theme V.46.13, 0082-2014-0007, no. AAAA-A18-118020890105-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Morozova.

Additional information

Abbreviations: TPR-СО, TPR-Н2, and TPR-С2Н6 – temperature-programmed reduction in CO, H2, and C2H6; CO-PROX, selective CO oxidation in H2 excess; MS, mechanochemical synthesis; XRD, X-ray diffraction; SEM, scanning electron microscopy; BET, Brunauer–Emmet–Teller method; AAS, atomic absorption spectroscopy; DSC, differential scanning calorimetric analysis; TG, thermogravimetric analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, O.S., Firsova, A.A., Tyulenin, Y.P. et al. Mechanochemical Synthesis as an Alternative Effective Technique for the Preparation of the Composite Catalysts. Kinet Catal 61, 824–831 (2020). https://doi.org/10.1134/S0023158420050067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420050067

Keywords:

Navigation