Skip to main content
Log in

Methane Decomposition on the Surface of Molybdenum Nanoparticles at Room Temperature

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The decomposition of methane on molybdenum nanoparticles was studied experimentally at room temperature. The molybdenum nanoparticles were synthesized in the gas phase using UV laser photolysis of Mo(CO)6 vapor in a flow reactor. The working part of the flow reactor was equipped with quartz windows for introducing the radiation from a pulsed Nd:YaG laser operating at the fourth harmonic (266 nm) at a frequency of 10 Hz. Methane was used as a carrier gas. As a result of irradiation of a mixture of methane with Mo(CO)6 vapors in the gas phase at room temperature, nanoparticles with sizes of 2–50 nm were synthesized. The phase composition of the nanoparticles included pure molybdenum, molybdenum carbide Mo2C, and molybdenum oxide MoO3. During the reaction, the hydrogen yield was measured with a VG-7 highly sensitive hydrogen analyzer based on a semiconductor metal–dielectric sensor. The measured H2 concentration varied from 5 to 25 ppm depending on the concentration of Mo(CO)6. The possibility of methane decomposition on molybdenum nanoparticles at room temperature was discussed based on the obtained data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Si, P.Z., Zhang, Z.D., Geng, D.Y., You, C.Y., Zhao, X.G., and Zhang, W.S., Carbon, 2003, vol. 41, p. 247.

    Article  CAS  Google Scholar 

  2. Scott, J.H.J. and Majetich, S.A., Phys. Rev. B, 1995, vol. 52, p. 12564.

    Article  CAS  Google Scholar 

  3. Dong, X.L., Zhang, Z.D., Xiao, Q.F., Zhao, X.G., Chuang, Y.C., Jin, S.R., Sun, W.M., Li, Z.J., Zheng, Z.X., and Yang, H., J. Mater. Sci., 1998, vol. 33, p. 1915.

    Article  CAS  Google Scholar 

  4. Zhang, H., J. Phys. Chem. Solids, 1999, vol. 60, p. 1845.

    Article  CAS  Google Scholar 

  5. Wang, Z.H., Zhang, Z.D., Choi, C.J., and Kim, B.K., J. Alloys Compd., 2003, vol. 361, p. 289.

    Article  CAS  Google Scholar 

  6. David, B., Pizúrova, N., Schneeweiss, O., Bezdicka, P., Morjan, I., and Alexandrescu, R., J. Alloys Compd., 2004, vol. 378, p. 112.

    Article  CAS  Google Scholar 

  7. Díaz, L., Santos, M., Ballesteros, C., Marysko, M., and Pola, J., J. Mater. Chem., 2005, vol. 15, p. 4311.

    Article  Google Scholar 

  8. Jager, C., Mutschke, H., Huisken, F., Alexandrescu, R., Morjan, I., Dumitrache, F., Bariega, R., Soare, I., David, B., and Schneeweiss, O., Appl. Phys., A, 2006, vol. 85, p. 53.

    Article  Google Scholar 

  9. Ning, L., Xiaojie, L., Xiaohong, W., Honghao, Y., Chengjiao, Z., and Haitao, W., Carbon, 2010, vol. 48, p. 3858.

    Article  Google Scholar 

  10. Gurentsov, E.V., Kinet. Catal., 2017, vol. 58, p. 233.

    Article  CAS  Google Scholar 

  11. Eremin, A.V., Gurentsov, E.V., and Musikhin, S.A., Mater. Res. Express, 2016, vol. 3, no. 10, p. 105041.

    Article  Google Scholar 

  12. Eremin, A.V., Gurentsov, E.V., Kolotushkin, R.N., and Musikhin, S.A., Mater. Res. Bull., 2018, vol. 103, p. 186.

    Article  CAS  Google Scholar 

  13. Navarro, R.M., Pena, M.A., and Fierro, J.L.G., Chem. Rev., 2007, vol. 107, p. 3952.

    Article  CAS  Google Scholar 

  14. Dupuis, A.C., Prog. Mater. Sci., 2005, vol. 50, p. 929.

    Article  CAS  Google Scholar 

  15. Abbas, H.F. and Wan Daud, W.M.A., Int. J. Hydrogen Energy, 2010, vol. 35, p. 1160.

    Article  CAS  Google Scholar 

  16. Okabe, H., Photochemistry of Small Molecules, New York: Wiley, 1978, p. 298.

    Google Scholar 

  17. Ohta, T., Cicoira, F., Doppelt, P., Beitone, L., and Hoffmann, P., Chem. Vap. Deposition, 2001, vol. 7, p. 33.

    Article  CAS  Google Scholar 

  18. Price, G., Thermodynamics of Chemical Processes, Oxford: Oxford Science Publications, 1998, p. 96.

    Google Scholar 

  19. Torres, D., de Llobet, S., Pinilla, J.L., L’azaro, M.J., Suelves, I., and Moliner, R., J. Nat. Gas Chem., 2012, vol. 21, p. 367.

    Article  CAS  Google Scholar 

  20. Muradov, N., Int. J. Hydrogen Energy, 2001, vol. 26, p. 1165.

    Article  CAS  Google Scholar 

  21. Lua, A.C. and Wang, H.Y., Appl. Catal., B, 2013, vols. 132–133, p. 469.

    Article  Google Scholar 

  22. Ibrahim, A.A., Fakeeha, A.H., Al-Fatesh, A.S., Abasaeed, A.E., and Khan, W.U., Int. J. Hydrogen Energy, 2015, vol. 40, p. 7593.

    Article  CAS  Google Scholar 

  23. Avdeeva, L.B., Reshetenko, T.V., Ismagilov, Z.R., and Likholobov, V.A., Appl. Catal., A, 2002, vol. 228, p. 53.

  24. Chesnokov, V.V. and Buyanov, R.A., Russ. Chem. Rev., 2000, vol. 69, no. 7, p. 623.

    Article  CAS  Google Scholar 

  25. Solbakken, A. and Emmett, P.H., J. Am. Chem. Soc., 1969, vol. 91, p. 31.

    Article  CAS  Google Scholar 

  26. Gleiser, M. and Chipman, J., J. Phys. Chem., 1963, vol. 67, p. 1539.

    Google Scholar 

  27. Iwai, T., Takahashi, I., and Handa, M., Metall. Trans. A, 1986, vol. 17, p. 2031.

    Article  Google Scholar 

  28. Lee, M.-C. and Simkovich, G., Metall. Trans. A, 1988, vol. 19, p. 2115.

    Article  Google Scholar 

  29. Shatynski, S.R., Oxidation of Metals, 1979, vol. 13, no. 2, p.105.

    Article  CAS  Google Scholar 

  30. Buntin, S.A., Cavanagh, R.R., Richter, L.J., and King, D.S., J. Chem. Phys., 1991, vol. 94, no. 12, p. 7937.

    Article  CAS  Google Scholar 

  31. Venkataraman, B., Hou, H., Zhang, Z., Chen, S., Bandukwalla, G., and Vernon, M., J. Chem. Phys., 1990, vol. 92, p. 5338.

    Article  CAS  Google Scholar 

  32. Kristofferson, H.H., Vegge, T., and Hansen, H.A., Chem. Sci., 2018, vol. 9, p. 6912.

    Article  Google Scholar 

  33. van Krevelen, D.W., Properties of Polymers, Amsterdam: Elsevier, 1976.

    Google Scholar 

  34. Sun, Y.-K. and Weinberg, W.H., J. Vac. Sci. Technol., A, 1990, vol. 8, p. 244.

    Article  Google Scholar 

  35. Abbott, H.L., Bukoski, A., Kavulak, D.F., and Harrison, I., J. Chem. Phys., 2003, vol. 119, p. 6407.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed under the government contract at the Joint Institute for High Temperatures, Russian Academy of Sciences. The electron microscopy data were obtained using the equipment of the Multiaccess Center of the Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences, under the government contract at the Federal Research Center “Crystallography and Photonics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Gurentsov.

Additional information

Translated by L. Smolina

Abbreviations: EDS, energy dispersive X-ray spectroscopy; HAADF-STEM, high-angle annular dark-field scanning transmission electron microscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurentsov, E.V., Eremin, A.V., Kolotushkin, R.N. et al. Methane Decomposition on the Surface of Molybdenum Nanoparticles at Room Temperature. Kinet Catal 61, 224–231 (2020). https://doi.org/10.1134/S0023158420020068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420020068

Keywords:

Navigation