Kinetics and Catalysis

, Volume 59, Issue 2, pp 136–142 | Cite as

The Influence of the Specific Surface Area of the Carbon Support on the Activity of Ruthenium Catalysts for the Ammonia-Decomposition Reaction

  • V. A. Borisov
  • K. N. Iost
  • V. L. Temerev
  • N. N. Leont’eva
  • I. V. Muromtsev
  • A. B. Arbuzov
  • M. V. Trenikhin
  • G. G. Savel’eva
  • N. S. Smirnova
  • D. A. Shlyapin
Article
  • 13 Downloads

Abstract

A method for fractionation of the starting carbon composite Sibunit by density was used to obtain three samples of Sibunit with different values of the specific surface area: Sib10 at 439 m2/g, Sib13 at 389 m2/g, and Sib17 at 256 m2/g. Investigation of Sibunits using both methods, that is, X-ray diffraction analysis and combination (Raman) scattering spectroscopy, did not reveal significant differences (the parameters of the crystal lattice and the ID/IG ratio). The fractionated supports were used to obtain Ru-containing catalysts for ammonia decomposition reaction (0.1 MPa, 400°C). The dependence of the specific catalytic activity calculated per 1 m2 of the support specific surface a for catalysts of the same composition (4.0% Ru and 13.6% Cs) has an extreme form. The authors connect this with two factors: the blocking support pores contain an active component and a change in features of ruthenium interactions with the promoter (Cs) of the catalyst.

Keywords

Sibunit specific surface area ammonia decomposition ruthenium catalysts specific catalytic activity cesium promoter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geological Survey, Mineral commodity summaries, U.S. Geological Survey, 2016, p. 202. doi 10.3133/70140094Google Scholar
  2. 2.
    García-García, F.R., Yi, H.M., Rodriguez-Ramos, I., and Guerrero-Ruiz, A., Catal. Commun., 2008, vol. 9, no. 3, p.482.CrossRefGoogle Scholar
  3. 3.
    Lan, R., Irvine, J.T.S., and Tao, S.W., Int. J. Hydrogen Energy, 2012, vol. 37, p. 1482.CrossRefGoogle Scholar
  4. 4.
    Efremov, V.N., Strekalov, Yu.V., Kashinskaya, A.V., and Golosman, E.Z., Catal. Ind., 2016, vol. 8, no. 1, pp. 9–15.CrossRefGoogle Scholar
  5. 5.
    GN 2.2.5.686-98 Maximum permissible concentration (MPC) of harmful substances in the air of the working area, Hygienic standards, Moscow, 1998.Google Scholar
  6. 6.
    Yin, S.F., Zhang, Q.H., Xu, B.Q., Zhu, W.X., Ng, C.F., and Au, C.T., J. Catal., 2004, vol. 224, p.384.CrossRefGoogle Scholar
  7. 7.
    Yin, S.F., Xu, B.Q., Ng, C.F., and Au, C.T., Appl. Catal., B, 2004, vol. 48, p.237.CrossRefGoogle Scholar
  8. 8.
    Xu, B.Q., Wang, S.J., Ng, C.F., and Au, C.T., Catal. Lett., 2004, vol. 96, p.113.CrossRefGoogle Scholar
  9. 9.
    Yin, S.F., Xu, B.Q., Zhu, W.X., Ng, C.F., Zhou, X.P., and Au, C.T., Catal. Today, 2004, vols. 93–95, p.27.CrossRefGoogle Scholar
  10. 10.
    Yin, S.F., Xu, B.Q., Zhou, X.P., and Au, C.T., Appl. Catal., A, 2004, vol. 277, p.1.CrossRefGoogle Scholar
  11. 11.
    US Patent 4163775, 1979.Google Scholar
  12. 12.
    Tsyrul’nikov, P.G., Iost, K.N., Shitova, N.B., and Temerev, V.L., Catal. Ind., 2016, vol. 8, no. 4, p.341.CrossRefGoogle Scholar
  13. 13.
    Li, L., Zhu, Z.H., Yan, Z.F., Lu, G.Q., and Rintoul, L., Appl. Catal., A, 2007, vol. 320, p.166.CrossRefGoogle Scholar
  14. 14.
    Smirnova, N.S., Borisov, V.A., Iost, K.N., Temerev, V.L., Surovikin, Ju.V., Guljaeva, T.I., Arbuzov, A.B., and Cyrul’nikov, P.G., Procedia Eng., 2015, vol. 113, p.84.CrossRefGoogle Scholar
  15. 15.
    Bukalov, S.S., Mikhalitsyn, L.A., Zubavichus, Ya.V., Leites, L.A., and Novikov, Yu.N., Ross. Khim. Zh., 2006, vol. 50, no. 1, p.83.Google Scholar
  16. 16.
    Ferrari, A.C., Solid State Commun., 2007, vol. 143, p.47.CrossRefGoogle Scholar
  17. 17.
    Plaksin, G.V., Cand. Sci. (Chem.) Dissertation, Novosibirsk: Institute of Catalysis, Siberian Branch, Russian Academy of Sciences IC SB RAS, 1991.Google Scholar
  18. 18.
    Plaksin, G.V., Baklanova, O.N., Lavrenov, A.V., and Likholobov, V.A., Solid Fuel Chem., 2014, vol. 48, no. 6, p.349.CrossRefGoogle Scholar
  19. 19.
    Plaksin, G.V., Khim. Interesah Ustoich. Razvit., 2001, no. 9, p.609.Google Scholar
  20. 20.
    Rossetti, I., Mangiarini, F., and Forni, L., Appl. Catal., A, 2007, vol. 323, p.219.CrossRefGoogle Scholar
  21. 21.
    Kugatov, P.V., Zhirkov, B.S., and Surovikin, Yu.V., Katal. Prom-sti, 2013, no. 5, p. 38.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Borisov
    • 1
    • 2
  • K. N. Iost
    • 1
  • V. L. Temerev
    • 1
  • N. N. Leont’eva
    • 1
  • I. V. Muromtsev
    • 1
  • A. B. Arbuzov
    • 1
    • 3
  • M. V. Trenikhin
    • 1
    • 2
    • 3
  • G. G. Savel’eva
    • 1
  • N. S. Smirnova
    • 4
  • D. A. Shlyapin
    • 1
  1. 1.Institute of Hydrocarbon Processing, Siberian BranchRussian Academy of SciencesOmskRussia
  2. 2.Omsk State Technical UniversityOmskRussia
  3. 3.Omsk Scientific Center, Siberian BranchRussian Academy of SciencesOmskRussia
  4. 4.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations