Skip to main content
Log in

Active sites of the functionalized coals and carbons for oxygen reduction reaction in a fuel cell

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The active sites of the coals and carbons functionalized with added nitrogen, oxygen and iron were studied for the oxygen reduction reaction (ORR) in a fuel cell. The catalysts were characterized based on the XPS, Raman, TEM, XRD and N2 adsorption measurements. The ORR activity was promoted by the addition of iron and aluminum as the inorganic components of the ash to the ash-free brown coal. The ORR activity of the ash-components added to the ash-free brown coal was correlated to the I D/I G ratio (deficient carbon degree) and the pyridinic nitrogen based on the Raman and XPS analyses, respectively. The active sites of the brown coal were formed at the pyridinic nitrogen on parts of the defective carbons associated with iron on the alumina. On the other hand, for the nitrogen-doped carbons without iron, the ORR activity was related to the pyrrolic-NH, pyridinic nitrogen species and the defective carbon degree. Based on these results, the active sites of the iron-added and nitrogen-doped coals and carbons were the iron sites coordinated with the pyridinic nitrogen, while the active sites of the iron-free and nitrogen-doped carbons without iron were the pyrrolic-NH and pyridinic-NH+ sites of parts of the defective carbons. The difference between the active sites of the nitrogen-doped coals and carbons in the presence of iron and those in the absence of iron was discussed. These results suggested that the pyridinic N as a base site transformed into pyridinic-NH+ as an acid site by attack of the proton from the anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lefevre, M., Dodelet, J.P., and Bertrand, P., J. Phys. Chem. B, 2000, vol. 104, p. 11238.

    Article  CAS  Google Scholar 

  2. Nabae, Y., Moriya, S., Matsubayashi, K., Lyth, S.M., Malon, M., Wu, L., Islam, N.M., Koshigoe, Y., Kuroki, S., Kakimoto, M., Miyata, S., and Ozaki, J., Carbon, 2010, vol. 48, p. 2613.

    Article  CAS  Google Scholar 

  3. Liu, G., Li, X., Ganesan, P., and Popov, B.N., Electrochim. Acta, 2010, vol. 55, p. 2853.

    Article  CAS  Google Scholar 

  4. Han, Y. and Lu, Y., Carbon, 2007, vol. 45, p. 2394.

    Article  CAS  Google Scholar 

  5. Wu, G., More, K.L., Johnston, C.M., and Zelenay, P., Science, 2011, vol. 332, p. 443.

    Article  CAS  Google Scholar 

  6. Muraoka, M., Tominaga, H., and Nagai, M., Fuel, 2012, vol. 102, p. 359.

    Article  CAS  Google Scholar 

  7. Lefevre, M., Dodelet, J.-P., and Bertrand, P., J. Phys. Chem. B, 2002, vol. 106, p. 8705.

    Article  CAS  Google Scholar 

  8. Koslowski, U.I., Abs-Wurmbach, I., Fiechter, S., and Bogdanoff, P., J. Phys. Chem. C, 2008, vol. 112, p. 15356.

    Article  CAS  Google Scholar 

  9. Titov, A., Zapol, P., Kral, P., Liu, D.-J., Iddir, H., Baishya, K., and Curtiss, L.A., J. Phys. Chem. C, 2009, vol. 113, p. 21629.

    Article  CAS  Google Scholar 

  10. Xiao, H., Shao, Z.-G., Zhang, G., Gao, Y., Lu, W., and Yi, B., Carbon, 2013, vol. 57, p. 443.

    Article  CAS  Google Scholar 

  11. Nabae, Y., Chokai, M., Ichihara, T., Aoki, T., and Hayakawa, T., Electrochim. Acta, 2016, vol. 216, p. 307.

    Google Scholar 

  12. Jaouen, F., Herranz, J., Lefevre, M., Dodelet, J.-P., Kramm, U.I., Herrmann, I., Bogdanoff, P., Maruyama, J., Nagaoka, T., Garsuch, A., Dahn, J.R., Olson, T., Pylypenko, S., Atanassov, P., and Ustinov, E.A., ACS Appl. Mater. Interfaces, 2009, vol. 1, p. 1623.

    Article  CAS  Google Scholar 

  13. Lefevre, M., Proietti, E., Jaouen, F., and Dodelet, J.-P., Science, 2009, vol. 324, p. 71.

    Article  CAS  Google Scholar 

  14. Subramanian, N.P., Li, X., Nallathambi, V., Kumaraguru, S.P., Colon-Mercado, H., Wu, G., Lee, J.-W., and Popov, B.N., J. Power Sources, 2009, vol. 188, p. 38.

    Article  CAS  Google Scholar 

  15. Ikeda, T., Boero, M., Huang, S., Terakura, K., Oshima, M., and Ozaki, J., J. Phys. Chem. C Lett., 2008, vol. 112, p. 14706.

    Article  CAS  Google Scholar 

  16. Tominaga, H., Ikeda, W., and Nagai, M., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 2659.

    Article  CAS  Google Scholar 

  17. Du, Q., Zheng, M., Zhang, L., Wang, Y., Chen, J., Xue, L., Dai, W., Ji, G., and Cao, J., Electrochim. Acta, 2010, vol. 55, p. 3897.

    Article  CAS  Google Scholar 

  18. Ando, T., Izhar, S., Tominaga, H., and Nagai, M., Electrochim. Acta, 2010, vol. 55, p. 2614.

    Article  CAS  Google Scholar 

  19. Muraoka, M. and Nagai, M., Fuel, 2012, vol. 97, p. 211.

    Article  CAS  Google Scholar 

  20. Shammi, M.S. and Nagai, M., Fuel, 2014, vol. 126, p. 134.

    Article  Google Scholar 

  21. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Poschl, U., Carbon, 2005, vol. 43, p. 1731.

    Article  CAS  Google Scholar 

  22. Rao, R., Podila, R., Tsuchikawa, R., Katoch, J., Tishler, D., Rao, A.M., and Ishigami, M., ACS Nano, 2011,vol. 5, p. 1594.

    Article  CAS  Google Scholar 

  23. Larouche, N. and Stansfield, B.L., Carbon, 2010, vol. 48, p. 620.

    Article  CAS  Google Scholar 

  24. Muraoka, M. and Nagai, M., Fuel, 2011, vol. 94, p. 204.

    Article  Google Scholar 

  25. Tominaga, H. and Nagai, M., Electrochim. Acta, 2009, vol. 54, p. 6732.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Nagai.

Additional information

Published in Russian in Kinetika i Kataliz, 2017, Vol. 58, No. 4, pp. 481–489.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagai, M., Ishiwatari, N., Ikeda, W. et al. Active sites of the functionalized coals and carbons for oxygen reduction reaction in a fuel cell. Kinet Catal 58, 455–462 (2017). https://doi.org/10.1134/S0023158417040152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417040152

Keywords

Navigation