Skip to main content
Log in

Structural and Catalytic Properties of Co-doped Perovskite Oxide on Coal Combustion

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, the structural and catalytic properties of co-doped perovskite oxide La0.8Ce0.2Mn1−xCoxO3 are investigated. First, coal combustion catalysts of mesoporous perovskite-type La0.8Ce0.2Mn1−xCoxO3 were prepared by using sol–gel method. The resulting powder was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller’s test (BET), and thermogravimetric analysis (TGA). Then, the results showed that after partially substituting La with Ce and substituting Mn with Co in LaMnO3, Ce occupied parts of the La site and Co occupied parts of the Mn site. As the substitution rate of Co increased, the pore diameter significantly decreased, and the specific surface area increased first and then decreased. Thirdly, thermogravimetric measurements and coal combustion constructed single-reaction model in the presence of the La0.8Ce0.2Mn1−xCoxO3 catalysis indicated that the presence of catalysts reduced the reaction initiation temperature (Teo), the maximum mass loss velocity temperature (Tmax), and the completion temperature of the main pyrolysis (Tf). The addition of 5 % La0.8Ce0.2Mn0.9Co0.1O3 to coal caused the reaction initiation temperature (Teo) to decrease by 34 °C compared with coal alone. Lastly, a distributed activation energy model of 5 % La0.8Ce0.2Mn0.9Co0.1O3 obtained an activation energy distribution curve. Results indicated that the activation energy of samples at the primary pyrolysis stage did not present a single peak value but mainly accumulated at 140–160 kJ, which could replace the mean activation energy of pyrolysis reaction. At the same time, frequency factor was not constant but presented a certain degree of linear correlation with activation energy, thereby indicating the presence of more than a single-reaction pyrolysis mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Jaenicke, G.K. Chuah, J.Y. Lee et al., Environ. Monit. Assess. 19, 131–138 (1991)

    Article  Google Scholar 

  2. A. Baylet, S. Royer, P. Marécot et al., Appl. Catal. B Environ. 77, 237–247 (2008)

    Article  Google Scholar 

  3. I. Yamada, S. Yagi, Rev. High Press. Sci. Technol. 26, 247–252 (2016)

    Article  Google Scholar 

  4. Y. Xue, H. Miao, S. Sun, RSC Adv. 7, 5214–5221 (2017)

    Article  Google Scholar 

  5. R.J. Voorhoeve, D.W. Johnson Jr., J.P. Remeika et al., Science 195, 827–833 (1997)

    Article  ADS  Google Scholar 

  6. M. Mebrouki, T. Ouahrani, Ç.Y. Öztekin, Int. J. Thermophys. 37, 71 (2016)

    Article  ADS  Google Scholar 

  7. N.M. Panich, G.N. Pirogova, R.I. Korosteleva et al., Russ. Chem. Bull. 48, 694–697 (1999)

    Article  Google Scholar 

  8. N. Yamazoe, Y. Teraoka, Catal. Today 8, 175–199 (1990)

    Article  Google Scholar 

  9. J.M.D. Tascon, L.G. Tejuca, Z. Phys. Chem. 121, 79–93 (1980)

    Article  Google Scholar 

  10. H. Yasuda, Y. Fujiwara, N. Mizuno et al., J. Chem. Soc., Faraday Trans. 90, 1183–1189 (1994)

    Article  Google Scholar 

  11. N.K. Gaur, R. Thakur, R.K. Thakur, Int. J. Thermophys. 33, 2311–2322 (2012)

    Article  ADS  Google Scholar 

  12. H. Wang, Z. Zhao, C. Xu, Chin. Sci. Bull. 50, 1440–1444 (2005)

    Article  Google Scholar 

  13. X. Huo, Preparation and Characterization of La1-xCexMn1-yCoyO3 for Catalytic Combustion of Soot (Tianjin University Press, Tianjin, 2012), pp. 56–61

    Google Scholar 

  14. Z. Shao, G. Xiong, S. Sheng et al., Stud. Surf. Sci. Catal. 118, 431–439 (1998)

    Article  Google Scholar 

  15. N. Mizuno, H. Fujii, M. Misono, Curr. Opin. Solid State Mater. Sci. 5, 381–387 (2001)

    Article  Google Scholar 

  16. T.S. Jamil, H.A. Abbas, A.M. Youssief et al., C. R. Chim. 20, 97–106 (2017)

    Article  Google Scholar 

  17. T. Jia, J. Zhang, W. Shi et al., Ind. Catal. 19, 11–14 (2011)

    Google Scholar 

  18. T. Klaytae, P. Panthong, S. Thountom, Ceram. Int. 39, S405–S408 (2013)

    Article  Google Scholar 

  19. M. Muthuraman, K.C. Patil, Mater. Res. Bull. 33, 655–661 (1998)

    Article  Google Scholar 

  20. K. Adhikary, M. Takahashi, S. Kikkawa, Mater. Res. Bull. 33, 1845–1855 (1998)

    Article  Google Scholar 

  21. Z. Yue, J. Zhou, L. Li et al., J. Magn. Magn. Mater. 208, 55–60 (2000)

    Article  ADS  Google Scholar 

  22. D.A. Fumo, M.R. Morelli, A.M. Segadaes, Mater. Res. Bull. 31, 1243–1255 (1996)

    Article  Google Scholar 

  23. D.A. Fumo, J.R. Jurado, A.M. Segadaes et al., Mater. Res. Bull. 32, 1459–1470 (1997)

    Article  Google Scholar 

  24. Y. Shen, K. Qiao, L. Cao et al., Chin. J. Chem. Eng. 9, 295–300 (2015)

    Google Scholar 

  25. X. Wang, J. Zuo, Y. Luo et al., Appl. Surf. Sci. 396, 95–101 (2017)

    Article  ADS  Google Scholar 

  26. G. Pecchi, C. Campos, O. Pena et al., J. Mol. Catal. A: Chem. 282, 158–166 (2008)

    Article  Google Scholar 

  27. Y. Zhao, P. Qiu, X. Xie et al., Coal Convers. 40, 13–18 (2017)

    Google Scholar 

  28. J. Yang, Y. Zhang, N. Cai, J. Eng. Therm. Energy Power. 25, 301–305 (2010)

    Google Scholar 

  29. H.R. Pouretedal, R. Ebadpour, Int. J. Thermophys. 35, 942–951 (2014)

    Article  ADS  Google Scholar 

  30. M. Fahad, Y. Iqbal, Int. J. Thermophys. 35, 361–374 (2014)

    Article  ADS  Google Scholar 

  31. X. Zhu, Z. Zhu, C. Zhang, J. Chem. Eng. Chin. Univ. 3, 223–228 (1999)

    Google Scholar 

  32. A.W. Coats, J.P. Redfern, Nature 201, 68–69 (1964)

    Article  ADS  Google Scholar 

  33. C.D. Doyle, J. Appl. Polym. Sci. 5, 285–292 (1961)

    Article  Google Scholar 

  34. Z. Pavlik, A. Trmik, T. Kulovaná, Int. J. Thermophys. 37, 32 (2016)

    Article  ADS  Google Scholar 

  35. H.L. Friedman, J. Macromol. Sci. A. 1, 57–79 (1967)

    Article  Google Scholar 

  36. P. Roohi, R. Alizadeh, E. Fatehifar, Int. J. Thermophys. 36, 1 (2015)

    Article  Google Scholar 

  37. C. Wang, C. Zhang, W. Hua et al., Chem. Eng. J. 315, 392–402 (2017)

    Article  Google Scholar 

  38. K. Miura, T. Maki, Energy Fuels 12, 864–869 (1998)

    Article  Google Scholar 

  39. T. Maki, A. Takatsuno, K. Miura, Energy Fuels 11, 972–977 (1997)

    Article  Google Scholar 

  40. S. Vyazovkin, A.K. Burnham, M.C. Jose, Thermochim. Acta 520, 1–19 (2011)

    Article  Google Scholar 

  41. Q. Sun, W. Li, H. Chen et al., J. Chem. Indus. Eng. 11, 1598–1602 (2003)

    Google Scholar 

  42. H. Song, G. Liu, J. Wu, Convers. Manag. 126, 1037–1046 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (No. 2014QNA20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Wang, J., Li, S. et al. Structural and Catalytic Properties of Co-doped Perovskite Oxide on Coal Combustion. Int J Thermophys 39, 131 (2018). https://doi.org/10.1007/s10765-018-2453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2453-5

Keywords

Navigation