Skip to main content
Log in

Kinetic model and mechanism of the acid dissociation of d-metal bis(dipyrrolylmethenates)

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A kinetic model and a mechanism have been developed by quantum chemical simulation for the protolytic dissociation of dinuclear homoleptic bis(dipyrrolylmethenates) of d-metals (M) with the general formula [M2L2] and a double-helix structure. The reaction is described by a third-order equation that is first-order with respect to the complex and second-order with respect to the acid. The main contribution to the total dissociation rate is made by the rate-determining step, specifically, attack of the second acetic acid molecule on the nitrogen atom of one of the coordination sites of the helicate. The dinuclear helicates of 3,3′-bis(dipyrrolylmethenes) are more inert in an acidic medium than 2,3′- and 2,2′-bis(dipyrrolylmethenes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezin, M.B., Antina, E.V., Dudina, N.A., Bushmarinov, I.S., Antipin, M.Yu., Antina, L.A., and Guseva, G.B., Mendeleev Commun., 2011, vol. 21, no. 3, p. 168.

    Article  CAS  Google Scholar 

  2. Wood, E. and Thompson, A., Chem. Rev., 2007, vol. 107, no. 5, p. 1831.

    Article  CAS  Google Scholar 

  3. Sheldrick, W.S. and Engel, J., J. Chem. Soc., Chem. Commun., 1980, no. 1, p. 5.

    Google Scholar 

  4. Thompson, A., Rettig, S.J., and Dolphin, D., Chem. Commun., 1999, p. 631.

    Google Scholar 

  5. Zhang, Z. and Dolphin, D., Inorg. Chem., 2010, vol. 49, no. 24, p. 11550.

    Article  CAS  Google Scholar 

  6. Thompson, A. and Dolphin, D., J. Org. Chem., 2000, vol. 65, no. 23, p. 7870.

    Article  CAS  Google Scholar 

  7. Tabba, H.D., Cavaleiro, J.A.S., Jeyakumar, D., Graca, M., Neves, P.M.S., and Smith, K.M., J. Org. Chem., 1989, vol. 54, p. 1943.

    Article  CAS  Google Scholar 

  8. Guseva, G.B., Antina, L.A., Antina, E.V., and Vyugin, A.I., Thermochim. Acta, 2012, vol. 544, p. 54.

    Article  CAS  Google Scholar 

  9. Kuznetsova, R.T., Aksenova, Yu.V., Orlovskaya, O.O., Kopylova, T.N., Tel’minov, E.N., Maier, G.V., Antina, E.V., Yutanova, S.L., Berezin, M.B., Guseva, G.B., Antina, L.A., and Semeikin, A.S., Khim. Vys. Energ., 2012, vol. 46, no. 6, p. 464.

    Google Scholar 

  10. Antina, L.A., Guseva, G.B., V’yugin, A.I., and Antina, E.V., Koord. Khim., 2012, vol. 38, no. 7, p. 529.

    Google Scholar 

  11. Kuznetsova, R.T., Maier, G.V., Sikorskaya, O.O., Lapin, I.N., Svetlichnyi, V.A., Antina, L.A., and Guseva, G.B., High Energy Chem., 2012, vol. 46, no. 2, p. 122.

    Article  Google Scholar 

  12. Kuznetsova, R.T., Kopylova, T.N., Maier, G.V., Sikorskaya, O.O., Ermolina, E.G., Guseva, G.B., and Antina, L.A., Opt. Spectrosc., 2011, vol. 110, no. 3, p. 385.

    Article  CAS  Google Scholar 

  13. Antina, L.A., Guseva, G.B., V’yugin, A.I., and Antina, E.V., Russ. J. Gen. Chem., 2012, vol. 82, no. 7, p. 1293.

    Article  CAS  Google Scholar 

  14. Antina, L.A., Guseva, G.B., V’yugin, A.I., and Antina, E.V., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 11, p. 1639.

    Article  CAS  Google Scholar 

  15. Antina, L.A., Guseva, G.B., V’yugin, A.I., Antina, E.V., and Berezin, M.B., Russ. J. Gen. Chem., 2013, vol. 83, no. 6, p. 1143.

    Article  CAS  Google Scholar 

  16. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347.

    Article  CAS  Google Scholar 

  17. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623.

    Article  CAS  Google Scholar 

  18. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  CAS  Google Scholar 

  19. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B: Condens. Matter Mater. Phys., 1988, vol. 37, p. 785.

    Article  CAS  Google Scholar 

  20. Rassolov, V.A., Ratner, M.A., Pople, J.A., Redfern, P.C., and Curtiss, L.A., J. Comput. Chem., 2001, vol. 22, p. 976.

    Article  CAS  Google Scholar 

  21. http://www.chemcraftprog.com

  22. Fujii, Y., Yamada, H., and Mizuta, M., J. Phys. Chem., 1988, vol. 92, p. 6768.

    Article  CAS  Google Scholar 

  23. Antina, L.A., Cand. Sci. (Chem.) Dissertation, Moscow: Inst. of Solution Chemistry, 2013.

    Google Scholar 

  24. Guseva, G.B., Antina, E.V., and Berezin, M.B., Russ. J. Coord. Chem., 2003, vol. 29, no. 10, p. 690.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Guseva.

Additional information

Original Russian Text © G.B. Guseva, E.V. Antina, A.A. Ksenofontov, A.I. V’yugin, 2014, published in Kinetika i Kataliz, 2014, Vol. 55, No. 4, pp. 411–420.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseva, G.B., Antina, E.V., Ksenofontov, A.A. et al. Kinetic model and mechanism of the acid dissociation of d-metal bis(dipyrrolylmethenates). Kinet Catal 55, 391–400 (2014). https://doi.org/10.1134/S0023158414040053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158414040053

Keywords

Navigation