Skip to main content
Log in

Optical Spectrum of Tetrafluorosubstituted Zinc Phthalocyanine

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Electronic structures of four tetrafluoro derivatives of zinc(II) phthalocyanine with substituents at non-peripheral positions as well as their valence electronically excited singlet states are calculated by density functional theory methods. For the structural isomers under study intense electronic transitions to which characteristic Q and B absorption bands correspond are analyzed. The UV-Vis absorption spectrum of the considered compound is modeled using the calculated data for the relative thermodynamic stability of the isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. G. Guillaud, J. Simon, and J. P. Germain. Metallophthalocyanines: Gas sensors, resistors and field effect transistors. Coord. Chem. Rev., 1998, 178-180, 1433-1484. https://doi.org/10.1016/S0010-8545(98)00177-5

    Article  CAS  Google Scholar 

  2. G. de , P. Vázquez, F. Agulló-López, and T. Torres. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev., 2004, 104(9), 3723-3750. https://doi.org/10.1021/cr030206t

    Article  CAS  PubMed  Google Scholar 

  3. G. de , C. G. Claessens, and T. Torres. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem. Commun., 2007, (20), 2000-2015. https://doi.org/10.1039/B614234F

    Article  Google Scholar 

  4. S. Campidelli, B. Ballesteros, A. Filoramo, D. D. Díaz, G. de , T. Torres, G. M. A. Rahman, C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D. M. Guldi, C. Cioffi, M. Prato, and J.-P. Bourgoin. Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via “click chemistry”. J. Am. Chem. Soc., 2008, 130(34), 11503-11509. https://doi.org/10.1021/ja8033262

    Article  CAS  PubMed  Google Scholar 

  5. C. G. Claessens, U. Hahn, and T. Torres. Phthalocyanines: From outstanding electronic properties to emerging applications. Chem. Rec., 2008, 8(2), 75-97. https://doi.org/10.1002/tcr.20139

    Article  CAS  Google Scholar 

  6. G. Bottari, G. de , D. M. Guldi, and T. Torres. Covalent and noncovalent phthalocyanine–carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem. Rev., 2010, 110(11), 6768-6816. https://doi.org/10.1021/cr900254z

    Article  CAS  PubMed  Google Scholar 

  7. M.-S. Liao and S. Scheiner. Electronic structure and bonding in metal phthalocyanines, metal = Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys., 2001, 114(22), 9780-9791. https://doi.org/10.1063/1.1367374

    Article  CAS  Google Scholar 

  8. M. Schwarze, W. Tress, B. Beyer, F. Gao, R. Scholz, C. Poelking, K. Ortstein, A. A. Günther, D. Kasemann, D. Andrienko, and K. Leo. Band structure engineering in organic semiconductors. Science, 2016, 352(6292), 1446. https://doi.org/10.1126/science.aaf0590

    Article  CAS  PubMed  Google Scholar 

  9. H. Lu and N. Kobayashi. Optically active porphyrin and phthalocyanine systems. Chem. Rev., 2016, 116(10), 6184-6261. https://doi.org/10.1021/acs.chemrev.5b00588

    Article  CAS  PubMed  Google Scholar 

  10. A. G. Martynov, E. A. Safonova, A. Yu. Tsivadze, and Y. G. Gorbunova. Functional molecular switches involving tetrapyrrolic macrocycles. Coord. Chem. Rev., 2019, 387, 325-347. https://doi.org/10.1016/j.ccr.2019.02.004

    Article  CAS  Google Scholar 

  11. A. G. Martynov, J. Mack, A. K. May, T. Nyokong, Y. G. Gorbunova, and A. Y. Tsivadze. Methodological survey of simplified TD-DFT methods for fast and accurate interpretation of UV-Vis-NIR spectra of phthalocyanines. ACS Omega, 2019, 4(4), 7265-7284. https://doi.org/10.1021/acsomega.8b03500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Q. Zhou, Z.-F. Liu, T. J. Marks, and P. Darancet. Electronic structure of metallophthalocyanines, MPc (M = Fe, Co, Ni, Cu, Zn, Mg) and fluorinated MPc. J. Phys. Chem. A, 2021, 125(19), 4055-4061. https://doi.org/10.1021/acs.jpca.0c10766

    Article  CAS  PubMed  Google Scholar 

  13. T. Mayer, U. Weiler, C. Kelting, D. Schlettwein, S. Makarov, D. Wöhrle, O. Abdallah, M. Kunst, and W. Jaegermann. Silicon-organic pigment material hybrids for photovoltaic application. Sol. Energy Mater. Sol. Cells, 2007, 91(20), 1873-1886. https://doi.org/10.1016/j.solmat.2007.07.004

    Article  CAS  Google Scholar 

  14. H. Jiang, P. Hu, J. Ye, Y. Li, H. Li, X. Zhang, R. Li, H. Dong, W. Hu, and C. Kloc. Molecular crystal engineering: tuning organic semiconductor from p-type to n-type by adjusting their substitutional symmetry. Adv. Mater., 2017, 29(10), 1605053. https://doi.org/10.1002/adma.201605053

    Article  CAS  Google Scholar 

  15. D. Klyamer, D. Bonegardt, and T. Basova. Fluoro-substituted metal phthalocyanines for active layers of chemical sensors. Chemosensors, 2021, 9(6), 133. https://doi.org/10.3390/chemosensors9060133

    Article  CAS  Google Scholar 

  16. D. Bonegardt, D. Klyamer, A. Sukhikh, P. Krasnov, P. Popovetskiy, and T. Basova. Fluorination vs. chlorination: effect on the sensor response of tetrasubstituted zinc phthalocyanine films to ammonia. Chemosensors, 2021, 9(6), 137. https://doi.org/10.3390/chemosensors9060137

    Article  CAS  Google Scholar 

  17. D. Klyamer, A. Sukhikh, S. Gromilov, P. Krasnov, and T. Basova. Fluorinated metal phthalocyanines: interplay between fluorination degree, films orientation, and ammonia sensing properties. Sensors, 2018, 18(7), 2141. https://doi.org/10.3390/s18072141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. S. Nizovtsev. Structural isomers and vibrational spectrum of tetrafluorosubstituted zinc phthalocyanine. J. Struct. Chem., 2022, 63(9), 1491-1495. https://doi.org/10.1134/S0022476622090104

    Article  CAS  Google Scholar 

  19. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  20. C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2), 785-789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  21. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys., 2010, 132(15), 154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  22. S. Grimme, S. Ehrlich, and L. Goerigk. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7), 1456-1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  23. F. Weigend and R. Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, 7(18), 3297-3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  24. N. Mardirossian and M. Head-Gordon. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys., 2016, 144(21), 214110. https://doi.org/10.1063/1.4952647

    Article  PubMed  Google Scholar 

  25. O. A. Vydrov and T. Van Voorhis. Nonlocal van der Waals density functional: The simpler the better. J. Chem. Phys., 2010, 133(24), 244103. https://doi.org/10.1063/1.3521275

    Article  CAS  PubMed  Google Scholar 

  26. W. Hujo and S. Grimme. Performance of the van der Waals density functional VV10 and (hybrid)GGA variants for thermochemistry and noncovalent interactions. J. Chem. Theory Comput., 2011, 7(12), 3866-3871. https://doi.org/10.1021/ct200644w

    Article  CAS  PubMed  Google Scholar 

  27. C. van Wüllen. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys., 1998, 109(2), 392-399. https://doi.org/10.1063/1.476576

    Article  Google Scholar 

  28. F. Neese, F. Wennmohs, A. Hansen, and U. Becker. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ′chain-of-spheres′ algorithm for the Hartree–Fock exchange. Chem. Phys., 2009, 356(1-3), 98-109. https://doi.org/10.1016/j.chemphys.2008.10.036

    Article  CAS  Google Scholar 

  29. R. Izsák and F. Neese. An overlap fitted chain of spheres exchange method. J. Chem. Phys., 2011, 135(14), 144105. https://doi.org/10.1063/1.3646921

    Article  PubMed  Google Scholar 

  30. F. Weigend. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys., 2006, 8(9), 1057-1065. https://doi.org/10.1039/B515623H

    Article  CAS  PubMed  Google Scholar 

  31. T. Yanai, D. P. Tew, and N. C. Handy. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett., 2004, 393(1), 51-57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  32. L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer. Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J. Chem. Theory Comput., 2012, 8(5), 1515-1531. https://doi.org/10.1021/ct2009363

    Article  CAS  PubMed  Google Scholar 

  33. J. Autschbach and M. Srebro. Delocalization error and “functional tuning” in Kohn–Sham calculations of molecular properties. Acc. Chem. Res., 2014, 47(8), 2592-2602. https://doi.org/10.1021/ar500171t

    Article  CAS  PubMed  Google Scholar 

  34. T. Körzdörfer and J.-L. Brédas. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. Acc. Chem. Res., 2014, 47(11), 3284-3291. https://doi.org/10.1021/ar500021t

    Article  CAS  PubMed  Google Scholar 

  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian09, Revision D.01. Wallingford, CT, USA: Gaussian, Inc., 2013.

  36. F. Neese. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci., 2018, 8(1), e1327. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  37. R. L. Martin. Natural transition orbitals. J. Chem. Phys., 2003, 118(11), 4775-4777. https://doi.org/10.1063/1.1558471

    Article  CAS  Google Scholar 

  38. Z. Liu, T. Lu, and Q. Chen. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon, 2020, 165, 461-467. https://doi.org/10.1016/j.carbon.2020.05.023

    Article  CAS  Google Scholar 

  39. T. Lu and F. Chen. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33(5), 580-592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  40. L. Edwards and M. Gouterman. Porphyrins: XV. Vapor absorption spectra and stability: Phthalocyanines. J. Mol. Spectrosc., 1970, 33(2), 292-310. https://doi.org/10.1016/0022-2852(70)90040-8

    Article  CAS  Google Scholar 

  41. N. Kobayashi, H. Ogata, N. Nonaka, and E. A. Luk′yanets. Effect of peripheral substitution on the electronic absorption and fluorescence spectra of metal-free and zinc phthalocyanines. Chem. Eur. J., 2003, 9(20), 5123-5134. https://doi.org/10.1002/chem.200304834

    Article  CAS  PubMed  Google Scholar 

  42. J. Mack and N. Kobayashi. Low symmetry phthalocyanines and their analogues. Chem. Rev., 2011, 111(2), 281-321. https://doi.org/10.1021/cr9003049

    Article  CAS  PubMed  Google Scholar 

  43. V. N. Nemykin, R. G. Hadt, R. V. Belosludov, H. Mizuseki, and Y. Kawazoe. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: Can modern computational chemistry methods explain experimental controversies? J. Phys. Chem. A, 2007, 111(50), 12901-12913. https://doi.org/10.1021/jp0759731

    Article  CAS  PubMed  Google Scholar 

  44. D. Bonegardt, D. Klyamer, P. Krasnov, A. Sukhikh, and T. Basova. Effect of the position of fluorine substituents in tetrasubstituted metal phthalocyanines on their vibrational spectra. J. Fluor. Chem., 2021, 246, 109780. https://doi.org/10.1016/j.jfluchem.2021.109780

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 21-73-00276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nizovtsev.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 112979.https://doi.org/10.26902/JSC_id112979

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizovtsev, A.S. Optical Spectrum of Tetrafluorosubstituted Zinc Phthalocyanine. J Struct Chem 64, 1228–1236 (2023). https://doi.org/10.1134/S0022476623070077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070077

Keywords

Navigation