Skip to main content
Log in

AB INITIO STUDY OF THE COMPRESSIBILITY AND ELECTRONIC PROPERTIES OF CRYSTALLINE PURINE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure and electronic properties of crystalline purine are studied by ab initio calculations based on the density functional theory with regard to the dispersion interaction depending on the pressure up to 1 GPa. Purine is shown to be characterized by a negative linear compressibility, and its mechanism is determined at the microscopic level. Elastic constants, linear compressibilities, and elastic moduli of purine are calculated. Based on the electron density topological analysis, the hydrogen bond between purine molecules is investigated. The band gap of purine is calculated and its change with pressure is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. D. G. Watson, R. M. Sweet, and R. E. Marsh. Acta Crystallogr., 1965, 19, 573-580. https://doi.org/10.1107/S0365110X65003900

    Article  CAS  Google Scholar 

  2. M. T. Ruggiero, J. A. Zeitlera, and A. Erba. Chem. Commun., 2017, 53, 3781-3784. http://dx.doi.org/10.1039/C7CC00509A

  3. A. D. Fortes, E. Suard, and K. S. Knight. Science, 2011, 331, 742-746. https://doi.org/10.1126/science.1198640

    Article  CAS  PubMed  Google Scholar 

  4. S. Hodgson, J. Adamson, S. Hunt, M. Cliffe, A. B. Cairns, and A. L. Goodwin. Chem. Commun., 2014, 50, 5264-5266. https://doi.org/10.1039/c3cc47032f

    Article  CAS  Google Scholar 

  5. K. Dolabdjian, A. Kobald, C. P. Romao, and H. Meyer. Dalton Trans., 2018, 47, 10249-10255. https://doi.org/10.1039/C8DT02001A

    Article  CAS  PubMed  Google Scholar 

  6. A. B. Cairns and A. L. Goodwin. Phys. Chem. Chem. Phys. 2015, 17, 20449-20465. https://doi.org/10.1039/C5CP00442J

  7. P. Serra-Crespo, A. Dikhtiarenko, E. Stavitski, J. Juan-Alcaniz, F. Kapteijn, F.-X. Coudert, and J. Gascon. CrystEngComm, 2015, 17, 276-280. https://doi.org/10.1039/C4CE00436A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Duyker, V. Peterson, G. Kearley, A. Studer, and C. Kepert. Nat. Chem., 2016, 8, 270-275. https://doi.org/10.1038/nchem.2431

    Article  CAS  Google Scholar 

  9. D. V. Korabelnikov and Yu. N. Zhuravlev. Phys. Chem. Chem. Phys., 2016, 18, 33126-33133. https://doi.org/10.1039/c6cp06902a

    Article  PubMed  Google Scholar 

  10. D. V. Korabelnikov and Yu. N. Zhuravlev. J. Phys. Chem. A, 2017, 121, 6481-6490. https://doi.org/10.1021/acs.jpca.7b04776

    Article  CAS  PubMed  Google Scholar 

  11. D. V. Korabelnikov, I. A. Fedorov, and Yu. N. Zhuravlev. Phys. Solid State, 2021, 63, 1021-1027. https://doi.org/10.1134/S106378342107012X

    Article  CAS  Google Scholar 

  12. T. P. Shakhtshneider, E. V. Boldyreva, M. A. Vasilchenko, H. Ahsbahs, and H. Uchtmann. J. Struct. Chem., 1999, 40(6), 892-898. https://doi.org/10.1007/BF02700697

    Article  CAS  Google Scholar 

  13. E. V. Boldyreva, T. P. Shakhtsneider, and H. Ahsbahs. J. Therm. Anal. Calorim., 2002, 68, 437-452. https://doi.org/10.1023/A:1016079400592

    Article  CAS  Google Scholar 

  14. E. V. Boldyreva. J. Mol. Struct., 2003, 647, 159-179. https://doi.org/10.1016/S0022-2860(02)00520-3

    Article  CAS  Google Scholar 

  15. A. D. Becke. J. Chem. Phys., 2014, 140, 18A301. https://doi.org/10.1063/1.4869598

    Article  CAS  PubMed  Google Scholar 

  16. S. Hunter, P. Coster, A. Davidson, D. Millar, S. Parker, W. Marshall, R. Smith, C. Morrison, and C. Pulham. J. Phys. Chem. C, 2015, 119, 2322-2334. https://doi.org/10.1021/jp5110888

    Article  CAS  Google Scholar 

  17. I. A. Fedorov and Yu. N. Zhuravlev. Chem. Phys. 2014, 436, 1-7. https://doi.org/10.1016/j.chemphys.2014.03.013

    Article  CAS  Google Scholar 

  18. D. V. Korabelnikov and Yu. N. Zhuravlev. J. Phys. Chem. Solids, 2015, 87, 38-47. https://doi.org/10.1016/j.jpcs.2015.08.002

    Article  CAS  Google Scholar 

  19. D. V. Korabelnikov and Yu. N. Zhuravlev. Phys. Solid State, 2017, 59, 254-261. https://doi.org/10.1134/S1063783417020123

    Article  Google Scholar 

  20. I. A. Fedorov. Comput. Mater. Sci., 2017, 139, 252-259. https://doi.org/10.1016/j.commatsci.2017.08.004

    Article  CAS  Google Scholar 

  21. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. J. Chem. Phys., 2010, 132, 154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  22. I. Fedorov, D. Korabelnikov, C. Nguyen, and A. Prosekov. Amino Acids, 2020, 52, 425-433. https://doi.org/10.1007/s00726-020-02818-3

    Article  CAS  PubMed  Google Scholar 

  23. I. Fedorov. J. Phys.: Condens. Matter., 2022, 34, 145702. https://doi.org/10.1088/1361-648X/ac4d5d

  24. I. Fedorov and Yu. Zhuravlev. J. Struct. Chem., 2016, 57(6), 1074-1078. https://doi.org/10.1134/S0022476616060032

    Article  CAS  Google Scholar 

  25. Yu. Zhuravlev and D. V. Korabelnikov. Mater. Today Commun., 2021, 28, 102509. https://doi.org/10.1016/j.mtcomm.2021.102509

    Article  CAS  Google Scholar 

  26. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni. J. Phys.: Condens. Matter., 2009, 21, 395502. https://doi.org/10.1088/1361-648X/aa8f79

  27. A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos. Phys. Rev. B, 1990, 41, 1227-1230. https://doi.org/10.1103/PhysRevB.41.1227

    Article  CAS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  29. H. J. Monkhorst and J. D. Pack. Phys. Rev. B, 1976, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  30. R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, and B. Kirtman. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018, 8, e1360. https://doi.org/10.1002/wcms.1360

    Article  Google Scholar 

  31. Thermo_pw. https://dalcorso.github.io/thermo_pw/ (accessed Apr 03, 2022).

  32. C. Gatti and S. Casassa. TOPOND14 Users Manual. Milano, Italy: CNR-ISTM Milano, 2014.

  33. P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson. J. Appl. Phys., 1998, 84, 4891. https://doi.org/10.1063/1.368733

    Article  CAS  Google Scholar 

  34. R. Hill. Proc. Phys. Soc., Sect. A, 1952, 65, 349. https://doi.org/10.1088/0370-1298/65/5/307

  35. S. F. Pugh. Philos. Mag., 1954, 45, 823-843. https://doi.org/10.1080/14786440808520496

    Article  CAS  Google Scholar 

  36. S. Masys and V. Jonauskas. Comput. Mater. Sci., 2015, 108, 153-159. https://doi.org/10.1016/j.commatsci.2015.06.034

    Article  CAS  Google Scholar 

  37. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. New Nork: Oxford University Press, 1990, 357-386.

  38. D. Cremer and E. Kraka. Angew. Chem., Int. Ed., 1984, 23, 627/628. https://doi.org/10.1002/anie.198406271

    Article  Google Scholar 

  39. C. Gatti. Z. Kristallogr., 2005, 220, 399-457. https://doi.org/10.1524/zkri.220.5.399.65073

    Article  CAS  Google Scholar 

  40. E. Espinosa, I. Alkorta, J. Elguero, and E. Molins. J. Chem. Phys., 2002, 117, 5529. https://doi.org/10.1063/1.1501133

    Article  CAS  Google Scholar 

  41. S. J. Grabowski. Chem. Rev., 2011, 111, 2597-2625. https://doi.org/10.1021/cr800346f

    Article  CAS  PubMed  Google Scholar 

  42. D. V. Korabelnikov and Yu. N. Zhuravlev. RSC Adv., 2019, 9, 12020-12033. https://doi.org/10.1039/C9RA01403A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170-173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by Russian Science Foundation and Kemerovo region-Kuzbass grant No. 22-22-20026, https://rscf.ru/project/22-22-20026/ (https://rscf.ru/en/project/22-22-20026/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Korabelnikov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 10, 100125.https://doi.org/10.26902/JSC_id100125

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, I.A., Korabelnikov, D.V. AB INITIO STUDY OF THE COMPRESSIBILITY AND ELECTRONIC PROPERTIES OF CRYSTALLINE PURINE. J Struct Chem 63, 1670–1677 (2022). https://doi.org/10.1134/S0022476622100134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622100134

Keywords

Navigation