Skip to main content
Log in

First Principles Study of the Electronic Structure and Optical Properties of Pentacene under Pressure

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The geometrical, electronic and optical properties of crystalline pentacene have been investigated within the framework of density functional theory including van der Waals interactions. The computed lattice parameters and band gap have good agreement with experimental data. We study the geometrical, electronic and optical properties of the pentacene under the hydrostatic pressure of 0–20 GPa. A pressure induced decrease in the band gap is observed. Moreover, the evolution of absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented. We can see that all the peaks of optical constants move towards a lower energies with increased pressure, meaning a red shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).

    Article  CAS  Google Scholar 

  2. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature (London, U.K.) 395, 151 (1998).

    Article  CAS  Google Scholar 

  3. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. DosSantos, J. L. Brédas, M. Logdlund, and W. R. Salaneck, Nature (London, U. K.) 397, 121 (1999).

    Article  CAS  Google Scholar 

  4. P. Peumans, S. Uchida, and S. R. Forrest, Nature (London, U.K.) 425, 158 (2003).

    Article  CAS  Google Scholar 

  5. A. I. Kitaigorodsky, Molecular Crystals and Molecules (Academic, New York, 1973).

    Google Scholar 

  6. R. B. Aust, W. H. Bentley, and H. G. Drickamer, J. Chem. Phys. 41, 1856 (1964).

    Article  CAS  Google Scholar 

  7. Q. W. Huang, G. H. Zhong, J. Zhang, X. M. Zhao, C. Zhang, H. Q. Lin, and X. J. Chen, J. Chem. Phys. 140, 114301 (2014).

    Article  CAS  Google Scholar 

  8. T. Kambe, X. He, Y. Takahashi, Y. Yamanari, K. Teranishi, H. Mitamura, S. Shibasaki, K. Tomita, R. Eguchi, H. Goto, Y. Takabayashi, T. Kato, A. Fujiwara, T. Kariyado, H. Aoki, and Y. Kubozono, Phys. Rev. B 86, 214507 (2012).

    Article  CAS  Google Scholar 

  9. C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, and T. T. M. Palstra, Acta Crystallogr., Sect. C 57, 939 (2001).

    Article  CAS  Google Scholar 

  10. E. S. Kadantsev, M. J. Stott, and A. Rubio, J. Chem. Phys. 124, 134901 (2006).

    Article  CAS  Google Scholar 

  11. S. Block, C. E. Weir, and G. J. Piermarini, Science (Washington, DC, U. S.) 169, 586 (1970).

    Article  CAS  Google Scholar 

  12. M. Oehzelt and R. Resel, Phys. Rev. B 66, 174104 (2002).

    Article  CAS  Google Scholar 

  13. K. Hummer, P. Puschnig, and C. Ambrosch-Draxl, Phys. Rev. B 67, 1841051 (2003).

    Article  CAS  Google Scholar 

  14. M. Oehzelt, A. Aichholzer, and R. Resel, Phys. Rev. B 74, 104103 (2006).

    Article  CAS  Google Scholar 

  15. B. Schatschneider, S. Monaco, A. Tkatchenko, and J. J. Liang, J. Phys. Chem. A 117, 8323 (2013).

    Article  CAS  Google Scholar 

  16. Ch. C. Mattheus, A. B. Dros, J. Baas, G. T. Oostergetel, A. Meetsma, J. L. de Boer, and Th. T. M. Palstra, Synth. Met. 138, 475 (2003).

    Article  CAS  Google Scholar 

  17. R. Aust, W. Bentley, and H. Drickamer, J. Chem. Phys. 41, 1856 (2004).

    Article  Google Scholar 

  18. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).

    Article  CAS  Google Scholar 

  19. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  20. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).

    Article  CAS  Google Scholar 

  21. K. Hummer and C. Ambrosch-Draxl, Phys. Rev. B 72, 205205 (2005).

    Article  CAS  Google Scholar 

  22. Y. Otsuka and M. Tsukada, J. Phys. Soc. Jpn. 78, 024713 (2009).

    Article  CAS  Google Scholar 

  23. N. P. Herring, L. S. Panchakarla, and M. S. El-Shall, Langmuir 30, 2230 (2014).

    Article  CAS  Google Scholar 

  24. H. Saigusa, S. Sun, and E. C. Lim, J. Phys. Chem 96, 2083 (1992).

    Article  CAS  Google Scholar 

  25. C. L. Hsu, Y. D. Gao, Y. S. Chen, and T. J. Hsueh, ACS Appl. Mater. Interfaces 6, 4277 (2014).

    Article  CAS  Google Scholar 

  26. L. Duan, P. Wang, X. Yu, X. Han, Y. Chen, P. Zhao, D. Li, and R. Yao, Phys. Chem. Chem. Phys. 16, 4092 (2014).

    Article  CAS  Google Scholar 

  27. S. Cho, J. W. Jang, J. S. Lee, and K. H. Lee, CrystEngComm 12, 3929 (2010).

    Article  CAS  Google Scholar 

  28. M. Chandrasekhar, S. Guha, and W. Graupner, Adv. Mater. 13, 613 (2001).

    Article  CAS  Google Scholar 

  29. M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  30. K. Hummer, P. Puschnig, and C. Ambrosch-Draxl, Phys. Rev. B 67, 184105 (2003).

    Article  CAS  Google Scholar 

  31. M. Q. Cai, Z. Yin, and M. S. Zhang, Appl. Phys. Lett. 83, 2805 (2003).

    Article  CAS  Google Scholar 

  32. S. Saha, T. P. Sinha, and A. Mookerjee, Phys. Rev. B 62, 8828 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Parts of the calculations were performed at the Center for Computational Science of CASHIPS, the ScGrid of Supercomputing Center, and the Computer Network Information Center of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenting Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenting Xiong First Principles Study of the Electronic Structure and Optical Properties of Pentacene under Pressure. Russ. J. Phys. Chem. 94, 1040–1046 (2020). https://doi.org/10.1134/S003602442005026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442005026X

Keywords:

Navigation