Skip to main content
Log in

INCLUSION COMPOUNDS OF ORGANIC AZOCHROMOPHORES IN THE CAVITIES OF METAL-ORGANIC FRAMEWORKS (Cr, Al)– MIL-101: SYNTHESIS AND PHOTOCHEMICAL STUDIES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Inclusion compounds of nitrogen-containing aromatic chromophores 4,4′-bispyridylethylene (bpe) and 4,4′-azopyridine (apy) in the cavities of mesoporous metal-organic frameworks Cr–MIL-101 and Al–MIL-101 are prepared and characterized by elemental analysis and nitrogen adsorption methods with a goal of finding approaches to the design of solid photochromic materials combining the benefits of photochromes in liquid solutions (high quantum yields) and in solid states (increased resistance to photodegradation). Photochemical properties of these compounds are qualitatively studied. Compound apy@Al–MIL-101 exhibits higher photoactivity than polycrystalline apy. Three other inclusion compounds are not photoactive. Possible reasons of the lack of photoactivity in these compounds are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. J. C. Crano and R. J. Guglielmetti. Organic Photochromic and Thermochromic Compounds, Vol. 1: Main Photochromic Families. New York, London: Plenum Press, 1999.

  2. M. V. Alfimov, O. A. Fedorova, and S. P. Gromov. J. Photochem. Photobiol. A: Chem., 2003, 158, 183. https://doi.org/10.1016/S1010-6030(03)00033-9

    Article  CAS  Google Scholar 

  3. V. I. Minkin. Russ. Chem. Rev., 2013, 82, 1. https://doi.org/10.1070/rc2013v082n01abeh004336

    Article  Google Scholar 

  4. D. A. Parthenopoulos and P. M. Rentzepis. Science, 1989, 245, 843. https://doi.org/10.1126/science.245.4920.843

    Article  CAS  PubMed  Google Scholar 

  5. A. J. Myles and N. R. Branda. Adv. Funct. Mater., 2002, 12, 167. https://doi.org/10.1002/1616-3028(200203)12:3<167::AID-ADFM167>3.0.CO;2-M

    Article  CAS  Google Scholar 

  6. Molecular Switches / Eds. B. L. Feringa and W. R. Browne. Wiley, 2011.

  7. D. Xiang, H. Jeong, T. Lee, and D. Mayer. Adv. Mater., 2013, 25, 4845. https://doi.org/10.1002/adma.201301589

    Article  CAS  PubMed  Google Scholar 

  8. E. Orgiu and P. Samori. Adv. Mater., 2014, 26, 1827. https://doi.org/10.1002/adma.201304695

    Article  CAS  PubMed  Google Scholar 

  9. S. K. Lazareva, E. M. Glebov, D. A. Nevostruev, D. V. Lonshakov, A. G. Lvov, V. Z. Shirinian, V. A. Zinovyev, and A. B. Smolentsev. Mendeleev Commun., 2019, 29, 285. https://doi.org/10.1016/j.mencom.2019.05.014.

    Article  CAS  Google Scholar 

  10. S. K. Lazareva, E. M. Glebov. A. V. Metelitsa, A. G. Lvov, V. Z. Shirinian, M. Grecova-Trencanova, D. Velic, and A. B. Smolentsev. Mendeleev Commun., 2019, 29, 564. DOI:10.1016/j.mencom.2019.09.029.

    Article  CAS  Google Scholar 

  11. M. Inouye, M. Ueno, T. Kitao, and K. Tsuchiya. J. Am. Chem. Soc., 1990, 112, 8977. https://doi.org/10.1021/ja00180a051

    Article  CAS  Google Scholar 

  12. O. A. Fedorova, F. Maurel, E. N. Ushakov, V. B. Nazarov, S. P. Gromov, A. V. Chebunkova, A. V. Feofanov, I. S. Alaverdyan, M. V. Alfimov, and F. Barigelletti. New J. Chem., 2003, 27, 1720. https://doi.org/10.1039/B304874H

    Article  CAS  Google Scholar 

  13. V. V. Korolev, D. Yu. Vorobyev, E. M. Glebov, V. P. Grivin, V. F. Plyusnin, A. V. Koshkin, O. A. Fedorova, S. P. Gromov, M. V. Alfimov, Yu. V. Shklyaev, T. S. Vshivkova, Yu. S. Rozhkova, A. G. Tolstikov, V. A. Lokshin, and A. Samat. J. Photochem. Photobiol. A: Chem., 2007, 192, 75. https://doi.org/10.1016/j.jphotochem.2007.05.006.

    Article  CAS  Google Scholar 

  14. X. Hu, M. E. McFadden, R. W. Barber, and M. J. Robb. J. Am. Chem. Soc., 2018, 140, 14073. https://doi.org/10.1021/jacs.8b09628

    Article  CAS  PubMed  Google Scholar 

  15. S. Fredrich, A. Bonasera, V. Valderrey, and S. Hecht. J. Am. Chem. Soc., 2018, 140, 6432. https://doi.org/10.1021/jacs.8b02982

    Article  CAS  PubMed  Google Scholar 

  16. E. Hadjoudis and I. M. Mavridis. Chem. Soc. Rev., 2004, 33, 579. https://doi.org/10.1039/B303644H

    Article  PubMed  Google Scholar 

  17. K. Amimoto and T. Kawato. J. Photochem. Photobiol. C: Photochem. Rev., 2005, 6, 207. https://doi.org/10.1016/j.jphotochemrev.2005.12.002

    Article  CAS  Google Scholar 

  18. M. Irie. Chem. Rev., 2000, 100, 1685. https://doi.org/10.1021/cr980069d

    Article  CAS  PubMed  Google Scholar 

  19. M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake. Chem. Rev., 2014, 114, 12174. https://doi.org/10.1021/cr500249p

    Article  CAS  PubMed  Google Scholar 

  20. A. G. Lvov, M. M. Khusniyarov, and V. Z Shirinian. J. Photochem. Photobiol. C: Photochem. Rev., 2018, 36, 1. https://doi.org/10.1016/j.jphotochemrev.2018.04.002

    Article  CAS  Google Scholar 

  21. J. Zhang and H. Tian. Adv. Opt. Mater., 2018, 6, 1701278. https://doi.org/10.1002/adom.201701278

    Article  CAS  Google Scholar 

  22. K. Shibata, K. Muto, S. Kobatake, and M. Irie. J. Phys. Chem. A, 2002, 106, 209. https://doi.org/10.1021/jp0115648

    Article  CAS  Google Scholar 

  23. S. Benard and P. Yu. Chem. Commun., 2000, 65. https://doi.org/10.1039/A907675A

    Article  Google Scholar 

  24. M. R. di Nunzio, P. L. Gentili, A. Romani, and G. Favaro. J. Phys. Chem. C, 2010, 114, 6123. https://doi.org/10.1021/jp9109833

    Article  CAS  Google Scholar 

  25. V. F. Plyusnin, E. M. Glebov, V. P. Grivin, V. V. Korolev, A. V. Metelitsa, N. A. Voloshin, and V. I. Minkin. Russ. Chem. Bull., 2011, 60, 124. https://doi.org/10.1039/C3CC44119A

    Article  CAS  Google Scholar 

  26. D. G. Patel, J. B. Benedict, R. A. Kopelman, and N. L. Frank. Chem. Commun., 2005, 2208. https://doi.org/10.1039/B417026A

    Article  Google Scholar 

  27. M. I. Nikolaeva, V. V. Korolev, E. A. Pritchina, E. M. Glebov, V. F. Plyusnin, A. V. Metelitsa, N. A. Voloshin, and V. I. Minkin. J. Phys. Org. Chem., 2011, 24, 833. https://doi.org/10.1002/poc.1852

    Article  Google Scholar 

  28. A. V. Zakharov, A. G. Lvov, I. A. Rostovtseva, A. V. Metelitsa, A. V. Chernyshev, M. M. Krayushkin, A. V. Yadykov, and V. Z. Shirinian. Photochem. Photobiol. Sci., 2019, 18, 1101. https://doi.org/10.1039/C8PP00507A

    Article  CAS  PubMed  Google Scholar 

  29. M. V. Oplachko, A. B. Smolentsev, I. M. Magin, I. P. Pozdnyakov, V. A. Nichiporenko, V. P. Grivin, V. F. Plyusnin, V. L. Vyazovkin, V. V. Yanshole, M. V. Parkhats, A. V. Yadykov, V. Z. Shirinian, and E. M. Glebov. Phys. Chem. Chem. Phys., 2020, 22, 5220. https://doi.org/10.1039/C9CP05744G

    Article  CAS  PubMed  Google Scholar 

  30. M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Yu. Shindo. Chem. Commun., 1999, 747. https://doi.org/10.1039/A809410A

    Article  Google Scholar 

  31. M. Herder, B. M. Schmidt, L. Grubert, M. Pätzel, J. Schwarz, and S. Hecht. J. Am. Chem. Soc., 2015, 137, 2738. https://doi.org/10.1021/ja513027s

    Article  CAS  PubMed  Google Scholar 

  32. V. V. Semoinova, E. M. Glebov, A. B. Smolentsev, V. V. Korolev, V. P. Grivin, V. F. Plyusnin, and V. Z. Shirinian. Kinet. Catal., 2015, 56, 316. https://doi.org/10.1134/S0023158415030180

    Article  CAS  Google Scholar 

  33. C. Sarter, M. Heimes, and A. Jäschke. Beilshtein J. Org. Chem., 2016, 12, 1103. https://doi.org/10.3762/bjoc.12.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. V. V. Semionova, V. V. Korolev, E. M. Glebov, V. Z. Shirinyan, and S. A. Sapchenko. J. Struct. Chem., 2016, 57, 1216. https://doi.org/10.15372/JSC20160623

    Article  Google Scholar 

  35. R. Haldar, L. Heinke, and C. Woll. Adv. Mater., 2019, 1905227. https://doi.org/10.1002/adma.201905227

    Article  CAS  Google Scholar 

  36. N. K. Kulachenkov, D. Sun, Y. A. Mezenov, A. N. Yankin, S. Rzhevskiy, V. Dyachuk, A. Nominé, G. Medjahdi, E. A. Pidko, and V. A. Milichko. Angew. Chem., Int. Ed., 2020, 59(36), 15522. https://doi.org/10.1002/anie.202004293.

    Article  CAS  Google Scholar 

  37. D. Hermann, H. Emerich, R. Lepski, D. Schaniel, and U. Ruschewitz. Inorg. Chem., 2013, 52, 2744. https://doi.org/10.1021/ic302856b

    Article  CAS  PubMed  Google Scholar 

  38. K. Muller, J. Wadhwa, J. S. Malhi, L. Schottner, A. Welle, H. Schwartz, D. Hermann, U. Ruschewitz, and L. Heinke. Chem. Commun., 2017, 8070. https://doi.org/10.1039/C7CC00961E

    Article  CAS  Google Scholar 

  39. A. Knebel, L. Sundermann, A. Mohmeyer, I. Strauss, S. Friebe, P. Behrens, and J. Caro. Chem. Mater., 2017, 29, 3111. https://doi.org/10.1021/acs.chemmater.7b00147

    Article  CAS  Google Scholar 

  40. V. V. Semionova, E. M. Glebov, V. V. Korolev, S. A. Sapchenko, D. G. Samsonenko, and V. P. Fedin. Inorg. Chim. Acta, 2014, 409, Part B, 342. https://doi.org/10.1016/j.ica.2013.09.048

    Article  CAS  Google Scholar 

  41. I. M. Walton, J. M. Cox, J. A. Coppin, C. M. Linderman, D. G. Patel, and J. B. Benedict. Chem. Commun., 2013, 8012. https://doi.org/10.1039/C3CC44119A

    Article  CAS  Google Scholar 

  42. F. Zhang, X. Q. Zou, W. Feng, X. J. Zhao, X. F. Jing, F. X. Sun, H. Ren, and G. S. Zhu. J. Mater. Chem., 2012, 22, 25019. https://doi.org/10.1039/C2JM34618D

    Article  CAS  Google Scholar 

  43. U. G. R. Lakmali and C. V. Hettiarachchi. CrystEngComm, 2015, 17, 8607. https://doi.org/10.1039/C5CE01639H

    Article  CAS  Google Scholar 

  44. H. A. Schwartz, S. Olthof, D. Schaniel, K. Meerholz, and U. Ruschewitz. Inorg. Chem., 2017, 56, 13100. https://doi.org/10.1021/acs.inorgchem.7b01908

    Article  CAS  PubMed  Google Scholar 

  45. H. Liu, Y. Fan, X. Li, K. Gao, H. Li, Y. Yang, X. Meng, J. Wu, and H. Hou. Dalton Trans., 2020, 49, 7952. https://doi.org/10.1039/d0dt00122h

    Article  CAS  PubMed  Google Scholar 

  46. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, and I. Margiolaki. Science, 2005, 309, 2040. https://doi.org/10.1126/science.1116275.

    Article  CAS  PubMed  Google Scholar 

  47. P. Serra-Crespo, E. V. Ramos-Fernandez, J. Gascon, and F. Kapteijn. Chem. Mater., 2011, 23, 2565. https://doi.org/10.1021/cm103644b.

    Article  CAS  Google Scholar 

  48. E. Sosnin, T. Oppenlander, and V. Tarasenko. J. Photochem. Photobiol. C: Photochem. Rev., 2006, 7, 145. https://doi.org/10.1016/j.jphotochemrev.2006.12.002

    Article  CAS  Google Scholar 

  49. V. G. Ponomareva, K. A. Kovalenko, A. P. Chupakhin, D. N. Dybtsev, E. S. Shutova, and V. P. Fedin. J. Am. Chem. Soc., 2012, 134, 15640. https://doi.org/10.1021/ja305587n.

    Article  CAS  PubMed  Google Scholar 

  50. N. V. Maksimchuk, O. A. Kholdeeva, K. A. Kovalenko, and V. P. Fedin. Isr. J. Chem., 2011, 51, 281. https://doi.org/10.1002/ijch.201000082.

    Article  CAS  Google Scholar 

  51. A. M. Cheplakova, A. O. Solovieva, T. N. Pozmogova, Y. A. Vorotnikov, K. A. Brylev, N. A. Vorotnikova, E. V. Vorontsova, Y. V. Mironov, A. F. Poveshchenko, K. A. Kovalenko, and M. A. Shestopalov. J. Inorg. Biochem., 2017, 166, 100. https://doi.org/10.1016/j.jinorgbio.2016.11.014.

    Article  CAS  PubMed  Google Scholar 

  52. K. A. Kovalenko, A. M. Cheplakova, P. V. Burlak, and V. P. Fedin. Russ. J. Inorg. Chem., 2015, 60, 790-794. https://doi.org/10.7868/S0044457X15070089.

    Article  Google Scholar 

  53. D. G. Witten and M. T. McCall. J. Am. Chem. Soc., 1969, 91, 5097. https://doi.org/10.1021/ja01046a027

    Article  CAS  Google Scholar 

  54. D. G. Witten and Y. J. Lee. J. Am. Chem. Soc., 1972, 94, 9142. https://doi.org/10.1021/ja00781a026

    Article  CAS  Google Scholar 

  55. F. Elisei, U. Mazzucato, H. Gorner, and D. Shulte-Frolinde, J. Photochem. Photobiol. A: Chem., 1989, 50, 209. https://doi.org/10.1016/1010-6030(89)85016-6.

    Article  CAS  Google Scholar 

  56. H. Gorner and H. J. Kuhn. In: Advances in Photochemistry, Vol. 19 / Eds. D. C. Neckers, D. H. Volman, and G. Von Bunau. John Wiley &amp;amp; Sons, 1995, 1-117. https://doi.org/10.1002/9780470133507.ch1

    Article  Google Scholar 

  57. S. P. Babailov, A. I. Kruppa, E. M. Glebov, and V. F. Plyusnin. Concepts Magn. Reson., Part A, 2006, 28, 337. https://doi.org/10.1002/cmr.a.20063

    Article  CAS  Google Scholar 

  58. E. V. Brown and G. R. Granneman. J. Am. Chem. Soc., 1975, 97, 621. https://doi.org/10.1021/ja00836a025

    Article  CAS  Google Scholar 

  59. M. Zhu and L. Yu. J. Therm. Anal. Calorim., 2018, 132, 463. https://doi.org/10.1007/s10973-017-6913-0

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR (project No. 18-03-00161) and by the Ministry of Science and Higher Education of the Russian Federation (project No. 121031700321-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Glebov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 1, pp. 87-98.https://doi.org/10.26902/JSC_id87100

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlioglo, B.M., Kovalenko, K.A. & Glebov, E.M. INCLUSION COMPOUNDS OF ORGANIC AZOCHROMOPHORES IN THE CAVITIES OF METAL-ORGANIC FRAMEWORKS (Cr, Al)– MIL-101: SYNTHESIS AND PHOTOCHEMICAL STUDIES. J Struct Chem 63, 152–163 (2022). https://doi.org/10.1134/S0022476622010152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622010152

Keywords

Navigation