Skip to main content
Log in

SIMULATION OF THE ELECTRONIC STRUCTURE OF C(C2H)4 AND Ge(C2H)4 BY THE DENSITY FUNCTIONAL THEORY USING X-RAY PHOTOELECTRON SPECTROSCOPY DATA

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Electronic structure and interactions between central atoms C and Ge and ethynyl groups in C(C≡CH)4 and Ge(C≡CH)4 are studied by the density functional theory; the experimental X-ray photoelectron spectroscopy data are obtained. Using calculations, correlation diagrams of energy levels for C(C≡CH)4, Ge(C≡CH)4, and C2H2 are constructed and compared with each other. Densities of states of C and Ge atoms in the molecules are analyzed. The main types of interatomic electronic interactions resulting in chemical bonds between central atoms C and Ge and ethynyl groups are determined from theoretical and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. M.-J. Sun, X. Cao, and Z. Cao. ACS Appl. Mater. Interfaces, 2016, 8, 16551. https://doi.org/10.1021/acsami.6b05502

    Article  CAS  PubMed  Google Scholar 

  2. F. L. Geyer, F. Rominger, and U. H. F. Bunz. Chem. Eur. J., 2014, 20, 3600. https://doi.org/10.1002/chem.201400105

    Article  CAS  PubMed  Google Scholar 

  3. Acetylene Chemistry: Chemistry, Biology, and Material Science / Eds. F. Diederich, P. J. Stang, and R. R. Tykwinski. Weinheim: Wiley-VCH, 2005. https://doi.org/10.1002/3527605487

    Book  Google Scholar 

  4. Y. Chujo and K. Tanaka. Bull. Chem. Soc. Jpn., 2015, 88, 633. https://doi.org/10.1246/bcsj.20150081

    Article  CAS  Google Scholar 

  5. W.-Y. Wong. Dalton Trans., 2007, 4495. https://doi.org/10.1039/B711478H

    Article  PubMed  PubMed Central  Google Scholar 

  6. J. Manna, K. D. John, and M. D. Hopkins. Adv. Organomet. Chem., 1995, 38, 79. https://doi.org/10.1016/S0065-3055(08)60427-X

    Article  Google Scholar 

  7. L. K. Luneva. Usp. Khim., 1967, 36, 1140.

  8. K. S. Feldman, C. K. Weinreb, W. J. Youngs, and J. D. Bradshaw. J. Am. Chem. Soc., 1994, 116, 9019. https://doi.org/10.1021/ja00099a020

    Article  CAS  Google Scholar 

  9. A. Schwarzer, I. C. Schilling, W. Seichter, and E. Weber. Silicon, 2009, 1, 3. https://doi.org/10.1007/s12633-008-9000-0

    Article  CAS  Google Scholar 

  10. B. Wrackmeyer, W. Milius, and A. Badshah. J. Organomet. Chem., 2002, 656, 97. https://doi.org/10.1016/S0022-328X(02)01565-6

    Article  CAS  Google Scholar 

  11. B. Wrackmeyer, E. Khan, A. Badshah, E. Molla, P. Thoma, O. L. Tok, W. Milius, R. Kempe, and J. Senker. Z. Naturforsch., B: Chem. Sci., 2010, 65(2), 119. https://doi.org/10.1515/znb-2010-0204

    Article  CAS  Google Scholar 

  12. W. Davidsohn and M. C. Henry. J. Organomet. Chem., 1966, 5, 29. https://doi.org/10.1016/S0022-328X(00)82247-0

    Article  CAS  Google Scholar 

  13. D. Mootz, H. Altenburg, and D. Lucke. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 1969, 130, 239. https://doi.org/10.1524/zkri.1969.130.1-6.239

    Article  Google Scholar 

  14. A. V. Churakov, S. S. Karlov, E. Kh. Yakubova, A. A. Selina, and G. S. Zaitseva. Acta Crystallogr., Sect.E: Struct. Rep. Online, 2005, 61, m52. https://doi.org/10.1107/S1600536804031241

    Article  Google Scholar 

  15. B. Wrackmeyer, S. Bayer, W. Milius, and E. V. Klimkina. J. Organomet. Chem., 2018, 865, 80. https://doi.org/10.1016/j.jorganchem.2018.02.027

    Article  CAS  Google Scholar 

  16. T. N. Danilenko, V. G. Vlasenko, and M. M. Tatevosyan. Bull. Russ. Acad. Sci.: Phys., 2015, 79, 1376. https://doi.org/10.3103/S1062873815110064

    Article  CAS  Google Scholar 

  17. T. N. Danilenko, V. G. Vlasenko, and M. M. Tatevosyan. Phys. Solid State, 2013, 55, 2582. https://doi.org/10.1134/s1063783413120093

    Article  CAS  Google Scholar 

  18. M. M. Tatevosyan, T. N. Danilenko, and V. G. Vlasenko. Russ. J. Gen. Chem., 2016, 86, 2008. https://doi.org/10.1134/S107036321609005X

    Article  CAS  Google Scholar 

  19. T. N. Danilenko, M. M. Tatevosyan, and V. G. Vlasenko. Russ. J. Gen. Chem., 2018, 88, 1557. https://doi.org/10.1134/S1070363218080017

    Article  CAS  Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr.,T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian03, Revision A.1. Pittsburgh, PA: Gaussian Inc., 2003.

  21. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B., 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  22. A. D. Becke. J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  23. A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  24. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  25. F. H. Allen, S. Bellard, and M. D. Brice. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1979, 35, 2331. https://doi.org/10.1107/S0567740879009249

    Article  Google Scholar 

  26. Chemcraft. http://www.chemcraftprog.com

  27. J. F. Capitani. J. Mol. Struct.: THEOCHEM, 1995, 332, 21. https://doi.org/10.1016/0166-1280(94)03916-9

    Article  CAS  Google Scholar 

  28. B. Ma, H. M. Sulzbach, Y. Xie, and H. F. I. Schaefer. J. Am. Chem. Soc., 1994, 116, 3529. https://doi.org/10.1021/ja00087a045

    Article  CAS  Google Scholar 

  29. R. D. Shannon. Acta Crystallogr., Sect. A, 1976, A32, 751. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  30. R. G. Cavell and D. A. Allison. J. Chem. Phys., 1978, 69, 159. https://doi.org/10.1063/1.436399

    Article  CAS  Google Scholar 

  31. J. Kreile and A. Schweig. Chem. Phys. Lett., 1980, 69, 71. https://doi.org/10.1016/0009-2614(80)80015-7

    Article  CAS  Google Scholar 

  32. J. Kreile, A. Schweig, and W. Thiel. Chem. Phys. Lett., 1981, 79, 547. https://doi.org/10.1016/0009-2614(81)85033-6

    Article  CAS  Google Scholar 

  33. G. Bieri and L. Åsbrink. J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. https://doi.org/10.1016/0368-2048(80)85013-4

    Article  CAS  Google Scholar 

  34. J. Müller, R. Arneberg, H. Ågren, R. Manne, P.-Å. Malmquist, S. Svensson, and U. Gelius. J. Chem. Phys., 1982, 77, 4895. https://doi.org/10.1063/1.443705

    Article  Google Scholar 

  35. G. Beltram, T. P. Fehlner, K. Mochida, and J. K. Kochi. J. Electron Spectrosc. Relat. Phenom., 1980, 18, 153. https://doi.org/10.1016/0368-2048(80)80013-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Southern Federal University (Internal SFedU Grant for Scientific Research, project VnGr-07/2020-01-IF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Zhukova.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 11, pp. 1797-1806.https://doi.org/10.26902/JSC_id81773

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatevosyan, M.M., Zhukova, T.N. & Vlasenko, V.G. SIMULATION OF THE ELECTRONIC STRUCTURE OF C(C2H)4 AND Ge(C2H)4 BY THE DENSITY FUNCTIONAL THEORY USING X-RAY PHOTOELECTRON SPECTROSCOPY DATA. J Struct Chem 62, 1684–1693 (2021). https://doi.org/10.1134/S0022476621110044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621110044

Keywords

Navigation