Skip to main content
Log in

QUANTUM CHEMICAL INVESTIGATION OF TIN–SUBSTITUENT BONDS IN TIN(II) ORGANIC COMPOUNDS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The tin–substituent bonds in Sn(II) organic compounds are studied by quantum chemical methods using the PC GAMESS-Firefly program package. The geometry optimization for the studied molecules is carried out by the DFT method (B3PW91functional, using the aug-cc-pVTZ-pp basis set with an effective core potential for tin and the 6-311++(2d,p) basis set for other atoms. The wave functions and the NBOs of tin–substituent bonds were calculated by the HF method using the x2c-TZVPall-electron relativistic basis set for the tin atom and the 6-311G(2d,p) basis set for other atoms. The values of topological characteristics of tin–substituent bonds are obtained by the AIM method. These bonds can be classified as “intermediate bonds” characterized by small contributions of Sn AOs in the MOs of the bonds, large differences between the charges on tin atoms, and low occupancies of the MOs of the bonds. The energies of Sn–R bonds are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. * The latest release of the Cambridge Structural Database [21] contains crystal and molecular structures of 241 Sn(II) compounds.

  2. * Hereinafter, the topological characteristics of tin–substituent bonds are described using the terminology by R. Bader [34].

REFERENCES

  1. J. D. Donaldson. Progr. Inorg. Chem., 1967, 7, 287–348.

  2. Organotin Compounds / Ed. A. K. Sawyer. M. Dekker: New York, 1971.

  3. V. I Schiryaev and V. F. Mironov. Russ. Chem. Rev., 1983, 52(2), 184–200.

  4. Y. Mizuhata, T. Sasamori, and N. Tokitoh. Chem. Rev., 2009, 109, 3479–3511.

  5. P. Bleckmann, H. Maly, R. Minkwitz, W. P. Neumann, and B. Watta. Tetrahedron Lett., 1982, 23(45), 4655–4658.

  6. T. Fjeldberg, A. Haaland, B. E. R. Schilling, M. F. Lappert, and J. A. Thorne. J. Chem. Soc., Dalton Trans., 1986, 1551–1556.

  7. M. Kira, R. Yauchibara, R. Hirano, C. Kabuto, and H. Sakurai. J. Am. Chem. Soc., 1991, 113, 7785–7787.

  8. L. A. Leites, S. S. Bukalov, R. R. Aysin, A. V. Piskunov, M. G. Chegerev, V. K. Cherkasov, A. V. Zabula, and R. West. Organometallics, 2015, 34(11), 2278–2286.

  9. M. L. McCrea-Hendrick, S. Wang, K. L. Gullett, J. C. Fettinger, and P. P. Power. Organometallics, 2017, 36, 3799–3805.

  10. T. J. Hadlington and J. Cameron. Chem. Commun., 2014, 50, 2321–2323.

  11. A.-A. Someşan, Le C. Erwann, T. Roisnel, C. Silvestru, and Y. Sarazin. Chem. Commun., 2018, 54, 5299–5305.

  12. H. Braunschweig, R. W. Chorley, P. B. Hitchcock, and M. F. Lappert. Chem. Commun., 1992, 1311–1313.

  13. P. Wilfling, K. Schittelkopf, M. Flock, R. H. Herber, P. P. Power, and R. C. Fischer. Organometallics, 2015, 34, 2222–2226.

  14. D. M. Barnhart, D. L. Clark, and J. G. Watkin. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1994, 50, 702–704.

  15. S. Wang, M. L. McCrea-Hendrick, C. M. Weinstein, C. A. Caputo, E. Hoppe, J. C. Fettinger, M. M. Olmstead, and P. P. Power. J. Am. Chem. Soc., 2017, 139, 6596−6604.

  16. S. K. Liew, S. M. I. Al-Rafia, J. T. Goettel, P. A. Lummis, S. M. McDonald, L. J. Miedema, M. J. Ferguson, R. McDonald, and E. Rivard. Inorg. Chem., 2012, 51, 5471−5480.

  17. P. Yang, R. C. Fischer, W. A. Merrill, J. Fischer, P. Lihung, B. D. Ellis, J. C. Fettinger, R. H. Herberb, and P. P. Power. Chem. Sci., 2010, 1, 461–468.

  18. J. Li, A. Stasch, C. Schenk, and J. Cameron. Dalton Trans., 2011, 40, 10448.

  19. T. Gans-Eichler, D. Gudat, and M. Nieger. Angew. Chem., Int. Ed., 2002, 41, 1888–1895.

  20. S. M. I. Al-Rafia, P. A. Lummis, M. J. Ferguson, R. McDonald, and E. Rivard. Inorg. Chem., 2010, 49, 9709–9717.

  21. Cambridge Structural Database, release 2020.

  22. R. Blom and A. Haaland. J. Mol. Struct., 1985, 128, 21–27.

  23. H. M. Tuononen, R. Roesler, J. L. Dutton, and P. J. Ragogna. Inorg. Chem., 2007, 46(25), 10693–10706.

  24. N. V. Alekseev and E. A. Chernyshev. J. Struct. Chem., 2008, 49(5), 828–836.

  25. N. V. Alekseev and E. A. Chernyshev. J. Struct. Chem., 2011, 52(1), 1–8.

  26. N. V. Alekseev. J. Struct. Chem., 2019, 60(11), 1703–1712.

  27. A. A. Granovsky. PC GAMESS Firefly, Version 7.1.G, http:// classic.chem.msu.su/gran/ firefly/index.html.

  28. T. A. Keith. AIMAll (Version 12.11.09). TK Gristmill Software: Overland Park KS, USA, 2012.

  29. P. L. A. Popelier. MORPHY 98: A Topological Analysis Program. UMIST: England, 1998.

  30. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold. NBO 5G. Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2004, http://www.chem.wisc.edu/~nbo5.G.

  31. A. J. Arduengo, R. L. Harlow, and M. Kline. J. Am. Chem. Soc., 1991, 113, 361–368.

  32. C. Boehme and G. Frenking. J. Am. Chem. Soc., 1996, 118, 2039–2046.

  33. P. Pollak and F. Weigend. J. Chem. Theory Comput., 2017, 13, 3705–3696.

  34. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Oxford University Press: New Nork, 1990.

  35. E. Espinosa, I. Alkorta, J. Elguero, and E. Molins. J. Chem. Phys., 2002, 117, 5529–5532.-

  36. K. Zborowskil, I. Alkorta, and J. Elguero. Pol. J. Chem., 2007, 81, 621–629.

  37. W. Nakanishi, S. Hayashi, and K. Narahara. J. Phys. Chem. A, 2009, 113, 10050–10057.

  38. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170–173.

  39. E. Espinosa, L. Alkorta, I. Mata, and E. Molins. J. Phys. Chem. A, 2005, 109, 6532–6534.

  40. A. A. Korlyukov, N. V. Alekseev, M. Yu. Antipin, N. V. Alekseev, K. V. Pavlov, O. V. Krivolapova, V. G. Lahtin, and E. A. Chernyshev. J. Mol. Struct., 2008, 875, 135–142.

  41. N. V. Alekseev and E. A. Chernyshev. J. Struct. Chem., 2010, 51(3), 419–427.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Alekseev.

Ethics declarations

The author declares that he has no conflict of interests.

Additional information

Translated from Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 2, pp. 185-196 https://doi.org/10.26902/JSC_id68298 .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, N.V. QUANTUM CHEMICAL INVESTIGATION OF TIN–SUBSTITUENT BONDS IN TIN(II) ORGANIC COMPOUNDS. J Struct Chem 62, 173–183 (2021). https://doi.org/10.1134/S0022476621020013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621020013

Keywords

Navigation