Skip to main content
Log in

QUANTUM CHEMICAL STUDY OF TIN–SUBSTITUENT BONDS IN TRICOORDINATED TIN COMPOUNDS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A quantum chemical study of tin–substituent bonds in tricoordinated tin compounds is conducted using the PC GAMESS-Firefly package. The structures of the studied molecules are optimized by the DFT method (B3PW91 functional; aug-cc-pVTZ-pp effective core potential basis set for tin; 6-311++(2d,p) basis set for other atoms). The wave functions and the NBOs of tin–substituent bonds are calculated with HF method using the x2c-TZVPall all-electron relativistic basis set for tin and the 6-311G(2d,2p) basis set for other atoms. Topological characteristics of tin–substituent bonds are calculated with the AIM method. It is shown that these bonds can be referred to as “intermediate type” bonds characterized by small contributions of Sn AOs to the bond MOs, large difference between the charges of tin atoms and the substituent, and low populations of bond MOs. The energies of Sn–R bonds are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. V. Zaitsev, E. A. Kuchuk, A. V. Churakov, G. S. Zaitseva, M. P. Egorov, and S. S. Karlov. Russ. Chem. Bull., Int. Ed., 2017, 66, 622-627. https://doi.org/10.1007/s11172-017-1782-z

    Article  CAS  Google Scholar 

  2. T. Chlupatý, Z. Padělková, A. Lyčka, J. Brusc, and A. Růžička. Dalton Trans., 2012, 41, 5010-5019. https://doi.org/10.1039/c2dt12472f

    Article  CAS  PubMed  Google Scholar 

  3. Cambridge Structural Database, release 2021.

  4. M. Veith. Angew. Chem., Int. Ed. Engl., 1987, 26, 1-14. https://doi.org/10.1002/anie.198700013

    Article  Google Scholar 

  5. M. Veith, E. Werle, R. Lisowsky, R. Koppe, and H. Schnockel. Chem. Ber., 1992, 125, 1375-1381. https://doi.org/10.1002/cber.19921250611

    Article  CAS  Google Scholar 

  6. M. Veith, M. Jarczyk, and V. Huch. Chem. Ber., 1988, 121, 347-355. https://doi.org/10.1002/cber.19881210222

    Article  CAS  Google Scholar 

  7. S. Wang, L. Tao, T. A. Stich, M. M. Olmstead, R. D. Britt, and P. P. Power. Inorg. Chem., 2017, 56, 14596-14604. https://doi.org/10.1021/acs.inorgchem.7b02413

    Article  CAS  PubMed  Google Scholar 

  8. R. Blom and A. Haaland. J. Mol. Struct., 1985, 128, 21-27. https://doi.org/10.1016/0022-2860(85)85036-5

    Article  CAS  Google Scholar 

  9. R. J. Gillespie and E. A. Robinson. Chem. Soc. Rev., 2005, 34, 396-407. https://doi.org/10.1039/b405359c

    Article  CAS  PubMed  Google Scholar 

  10. H. Jana, W. Roesky, C. Schulzke, A. Doring, T. Beck, A. Pal, and R. Herbst-Irmer. Inorg. Chem., 2009, 48, 193-197. https://doi.org/10.1021/ic8015639

    Article  CAS  Google Scholar 

  11. N. Kuhn, T. Kratz, D. Blaser, and R. Boese. Chem. Ber., 1995, 128, 245-250. https://doi.org/10.1002/cber.19951280307

    Article  CAS  Google Scholar 

  12. M. Ozaki, Y. Katsuki, J. Liu, T. Handa, R. Nishikubo, S. Yakumaru, Y. Hashikawa, Y. Murata, T. Saito, Y. Shimakawa, and Y. Kanemitsu. ACS Omega, 2017, 2, 7016-7021. https://doi.org/10.1021/acsomega.7b01292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. U. Baumeister, H. Hartung, K. Jurkschat, and A. Tzschach. J. Organomet. Chem., 1986, 304, 107-114. https://doi.org/10.1016/S0022-328X(00)99679-7

    Article  CAS  Google Scholar 

  14. N. V. Alekseev and E. A. Chernyshev. J. Struct. Chem., 2008, 49(5), 828-836. https://doi.org/10.1007/s10947-008-0145-x

    Article  CAS  Google Scholar 

  15. N. V. Alekseev and E. A. Chernyshev. J. Struct. Chem., 2011, 52(1), 1-8. https://doi.org/10.1134/S002247661101001X

    Article  CAS  Google Scholar 

  16. N. V. Alekseev. J. Struct. Chem., 2019, 60(11), 1703-1712. https://doi.org/10.1134/S0022476619110027

    Article  CAS  Google Scholar 

  17. N. V. Alekseev. J. Struct. Chem., 2021, 62(3), 185-196. https://doi.org/10.1134/S0022476621020013

    Article  CAS  Google Scholar 

  18. A. A. Granovsky. GAMESS Firefly. Version 8.1, 2013. http:// classic.chem.msu.su/gran/firefly/index.html

  19. T. A. Keith. AIMAll. Version 12.11.09. Overland Park, KS, USA: TK Gristmill Software, 2012.

  20. F. W. Biegler-Koning, R. F. Bader, and T. H. Tang. J. Comput. Chem., 1982, 3, 317-321. https://doi.org/10.1002/jcc.540030306

    Article  Google Scholar 

  21. P. L. A. Popelier. MORPHY 98: A Topological Analysis Program. England: UMIST, 1998.

  22. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold. NBO 5.0. Natural Bond Orbital Analysis Program. Madison, WI: Theoretical Chemistry Institute, University of Wisconsin, 2001.

  23. C. Boehme and G. Frenking. J. Am. Chem. Soc., 1996, 118, 2039-2046. https://doi.org/10.1021/ja9527075

    Article  CAS  Google Scholar 

  24. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. New Nork: Oxford University Press, 1990, 357-386.

  25. I. Alkorta, I. Rozas, and J. Elguero. Struct. Chem., 1998, 9, 243-247. https://doi.org/10.1023/A:1022424228462

    Article  CAS  Google Scholar 

  26. K. Zborowskil, I. Alkorta, and J. Elguero. Pol. J. Chem., 2007, 81, 621-629.

  27. W. Nakanishi, S. Hayashi, and K. Narahara. J. Phys. Chem. A, 2009, 113, 10050-10057. https://doi.org/10.1021/jp903622a

    Article  CAS  Google Scholar 

  28. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170-173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  29. E. Espinosa, L. Alkorta, I. Mata, and E. Molins. J. Phys. Chem. A, 2005, 109, 6532-6534. https://doi.org/10.1021/jp050776s

    Article  CAS  PubMed  Google Scholar 

  30. A. A. Korlyukov, M. Yu. Antipin, N. V. Alekseev, K. V. Pavlov, O. V. Krivolapova, V. G. Lahtin, and E. A. Chernyshev. J. Mol. Struct., 2008, 875, 135-142. https://doi.org/10.1016/j.molstruc.2007.04.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Alekseev.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 4, pp. 410-424.https://doi.org/10.26902/JSC_id89891

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, N.V. QUANTUM CHEMICAL STUDY OF TIN–SUBSTITUENT BONDS IN TRICOORDINATED TIN COMPOUNDS. J Struct Chem 63, 510–523 (2022). https://doi.org/10.1134/S0022476622040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622040023

Keywords

Navigation